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What’s Machine Learning (ML)?

An informal definition by Arthur Samuel (1959):

”the field of study that gives computers the ability to learn without being
explicitly programmed”.

3/39



What is Machine Learning (ML)?

A more formal definition by Tom M. Mitchell (1997):

”A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E”.
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Traditional Programming vs Machine Learning

Traditional programming:

Test input

ComputationProgramHuman Test results

Machine learning:

Train Input & Results

Learning Program Computation

Test input

Test results
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Branches of Machine Learning

Machine Learning

Supervised Learning Unsupervised Learning

Regression Classification Others...Clustering

Predicting or explaining a variable Understanding the structure of
using another group of variables. a group of variables.
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General Setting of Machine Learning

Example:

X = (Age,Weight,Height,Salary) ∈ R4.
Y = Size of the ring finger or a favorite sport among
{soccer, volleyball, basketball, boxing}.
Classifying people according to X .

Supervised learning: learning a function f : X → Y such that

Y ≈ f (X )

where

Input or predictor: X ∈ X = Rd

Output or response variable: Y ∈ Y =

{
R : Regression.

{1, 2, ...,K} : Classification.

Unsupervised learning: forget Y and focus only on X .

Dimensional reduction.
Grouping or clustering structure...
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Supervised Classification
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Motivation Example: Spam Dataset
Size: 4601× 58.

Column 1st-48th: % of the corresponding words ([0, 100]).
Column 49st-54th: % of the corresponding characters ([0, 100]).
Column 55th: average length of uninterrupted sequences of capital letters
(≥ 1).
Column 56th: length of longest uninterrupted sequence of capital letters
(N).
Column 57th: total number of capital letters in the e-mail (N).
Column 58th: spam or non-spam.

Available at:
http://archive.ics.uci.edu/ml/machine-learning-databases/spambase/
Objective: construct email spam filters based on this dataset.

Dn =

ID make ... charSemicolon ... capitalTotal type

1 0 ... 0 ... 278 spam

2 0.21 ... 0 ... 1028 spam

... ... ... ... ... ... ...

4601 0 ... 0 ... 40 non-spam

8/39
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Problem Formulation

Input-output: (X ,Y ) ∈ X × Y = R57 × {0, 1}

where

output Y =

{
1, spam

0, non-spam

Find a classifier f : R57 → {0, 1} minimizing the following
misclassification error:

R(f ) = E[1{f (X )6=Y }] = P[f (X ) 6= Y ]
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Some Well-known Results on Supervised Classification

η(x)= E[Y |X = x ] =P(Y = 1|X = x).

A classifier g is optimal or known as Bayes classifier if

R(g) = inf
f :X→{0,1}

R(f ) = inf
f :X→{0,1}

P[f (X ) 6= Y ] = R∗

Bayes classifier [Devroye et al., 1997] is defined by,

g(x) =

{
1, if η(x) ≥ 0.5

0, Otherwise

Looks easy right? But wait!

Look at this guy: η(x) = P(Y = 1|X = x).

In practice, η is intractable!
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Empirical Setting

Suppose all the observations (emails) Dn = {(xi , yi )
n
i=1}

(n = 4601, d = 57) are iid copies of (X ,Y ).

Dn =

ID x (1) x (2) ... x (d) y

1 x1
1 x2

1 ... xd
1 y1

2 x1
2 x2

2 ... xd
2 y2

... ... ... ... ... ...

n x1
n x2

n ... xd
n yn

Empirical misclassification error:

Rn(f ) =
1

n

n∑
i=1

1{f (xi )6=yi}

Objective: finding a data-based classifier fn minimizing the empirical
error of the testing set (new unseen observation).
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k-Nearest Neighbors Classifier
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k-Nearest Neighbors Classifier (k-NN)
d(x , y) = ‖x − y‖2

2 defined on X (= R57).

A new observation (email) x , define Nk(x) = {x(i)}ki=1 i.e.,

d(x , x(1)) ≤ d(x , x(2)) ≤ ... ≤ d(x , x(k))

The prediction of x by k-NN classifier = majority class among {y(i)}ki=1.

k-NN(x) =

{
1, η̂(x) ≥ 0.5

0, Otherwise
where η̂(x) =

1

k

k∑
i=1

y(i)
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1-NN

Figure: An example taken from [Hastie et al., 2009]
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15-NN

Figure: An example taken from [Hastie et al., 2009]
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Cross-Validation Technique

Figure: Representation of 5-folds cross-validation.
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Choosing k using Cross-Validation Technique
K -folds cross-validation:

1 Randomly split Dn into K folds.

2 for j = 1, 2, ..., kmax:
for i = 1, 2, ...,K :

Validation (testing) set: Dni .
Training set: the remaining ones (Dn − Dni ).
Compute the error:

Ri
j =

1

|Dni |
∑

x`∈Dni

1{j-NN(x`) 6=y`}

Compute: Rj = 1
K

∑K
i=1Ri

j

3 k = argmin1≤j≤kmax
Rj

Remark:

X should be renormalized to erase the influence of the units.

Other options of d .
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Linear & Quadratic Discriminant Analysis
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Review about Gaussian Distribution
X ∼ Nd(µ,Σ) if it has the following density:

φ(x ;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
− 1

2
(x − µ)TΣ−1(x − µ)

]
Example:

µ1 =

[
1
1

]
,Σ1 =

[
4 0.1

0.1 1

]
µ2 =

[
1

10

]
,Σ2 =

[
1 −1
−1 2

]
µ3 =

[
10
10

]
,Σ3 =

[
2 1
1 1

]
µ4 =

[
10
1

]
,Σ4 =

[
2 0
0 2

]
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Linear & Quadratic Discriminant Analysis

Recall that η(x) = P(Y = 1|X = x).

P(Y = k|X = x): Posterior probability (k ∈ {0, 1}).

pk = P(Y = k): Prior probability.

fk(x) = P(X = x |Y = k): class-conditional probability.

Bayes’s formula:

P(Y = k|X = x) =
pk fk(x)

p0f0(x) + p1f1(x)
, k ∈ {0, 1}

(H1) Gaussian hypothesis:

fk(x) = φ(x ;µk ,Σk) =
1

(2π)d/2|Σk |1/2
exp

[
− 1

2
(x − µk)TΣ−1

k (x − µk)
]
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LDA & QDA
In general (K classes):

Maximizing P(Y = k|X = x) ⇔ maximizing pk fk(x)
⇔ maximizing log(pk fk(x))
⇔ maximizing:

δ
(q)
k (x) = −1

2
log(|Σk |)−

1

2
(x − µk)TΣ−1

k (x − µk) + log(pk) (QDA)

(H2) Homoscedasticity hypothesis:

Σk = Σ,∀k

Thus, we maximize:

δ
(`)
k (x) = xTΣ−1µk −

1

2
µTk Σ−1µk + log(pk) (LDA)

Particularly,

x is a spam iff δ
(`)
1 (x) > δ

(`)
0 (x) (LDA)

x is a spam iff δ
(q)
1 (x) > δ

(q)
0 (x) (QDA)
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x is a spam iff δ
(q)
1 (x) > δ

(q)
0 (x) (QDA)
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LDA & QDA
In practice (K classes):

δ
(`)
k (x) = xTΣ−1µk −

1

2
µTk Σ−1µk + log(pk) (LDA)

δ
(q)
k (x) = −1

2
log(|Σk |)−

1

2
(x − µk)TΣ−1

k (x − µk) + log(pk) (QDA)

We estimate:

p̂k = nk/n where nk is the number of points in class k

µ̂k =
1

nk

∑
yi=k

xi

Σ̂ =
1

n − K

K∑
k=1

∑
yi=k

(xi − µk)(xi − µk)T (LDA)

Σ̂k =
1

n − 1

∑
yi=k

(xi − µk)(xi − µk)T (QDA)
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LDA & QDA

Misclassification error: 0.045 0.04

21/39



Classification Trees
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Classification Trees

Tree Principle:

Construct a recursive partition of Dn by splitting at each time a certain
variable at a certain value.

Prediction = majority vote.
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Classification Trees
Remarks:

Easy to interpret.

Quality of prediction depends on the structure of the tree.

Issue: finding an optimal tree is hard!

Construction:

Branching or growing (greedy top-down approach).

Pruning (bottom-up approach).

Available algorithms:

ID3 (Iterative Dichotomiser 3).

C4.5 (successor of ID3).

CART (Classification And Regression Tree).

Others...
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Branching or Growing a Tree
Branching (top-down):

Start from the root: Dn.

Recursively split those regions along a certain variable at a certain
value.

Split so that the two parts are as homogeneous or pure as possible.
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Branching or Growing a Tree
At the jth split:

Rj : the region to be split.
p̂k
j = 1

|Rj |
∑

xi∈Rj
1{yi=k}: probability of class k in Rj .

k∗ = k∗j = argmax1≤k≤K p̂k
j : majority class of region Rj .

Splitting criteria (impurity measures):

Misclassification error: 1
|Rj |
∑

xi∈Rj
1{yi 6=k∗j } = 1− p̂k∗

j .

Gini index:
∑

k 6=k′ p̂
k
j p̂k′

j =
∑K

k=1 p̂k
j (1− p̂k

j ).

Cross-entropy or deviance: −
∑K

k=1 p̂k
j log(p̂k

j ).
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Branching or Growing a Tree

Splitting procedure:

Search for x (i) and tj minimizing one of these criteria.

Split Rj into two parts: R
(1)
j = {x : x (i) ≤ tj} and R

(2)
j = {x : x (i) > tj}.

Continue until a stopping criterion is met.

Stopping criteria:

Depth of the tree.

Minimum number of points in a region.

Construction aspect:

Too complex tree may lead to over-fitting.

Too simple tree might be too weak for prediction.
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Pruning a Tree
Pruning (bottom-up):

Aim to find a more effectively simple subtree from a given complex tree.

Merging or collapsing nodes to shorten the tree.

Based on dynamic programming principle.
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Pruning aTtree

Cost complexity for a tree T :

Cλ(T ) =

|T |∑
j=1

njQj(T ) + λ|T |

where

nj : number of points in region Rj .

Qj(T ): either of the splitting criteria.

|T |: number of nodes or leaves of T .

λ: tuning parameter (trad-off between the size of the tree and goodness
of fit to the data).
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Pruning a Tree
Pruning procedure for a given λ:

1 Start with a complex tree T0.
for j = 1, 2, ..., |T0| − 1:

Weakest link pruning: subtree of size |T0| − j .

Choose Tj with the smallest per-node increase in
∑|T0|−j

i=1 niQi (T ).

2 We produce a finite sequence of trees: T0 ⊃ T1 ⊃ ... ⊃ T|T0|−1.
3 Pick the one minimizes Cλ(T ).

(See, for example, [Breiman et al., 1984] and [Hastie et al., 2009])

Remark: λ is chosen using cross-validation technique.
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An Example of the Procedure

A complex tree T0

30/39



An Example of the Procedure

A subtree T1 ⊂ T0
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An Example of the Procedure

A subtree T2 ⊂ T1 ⊂ T0
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An Example of the Procedure

A subtree T4 ⊂ T3 ⊂ T2 ⊂ T1 ⊂ T0
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An Example of the Procedure

A subtree T5 ⊂ T4 ⊂ T3 ⊂ T2 ⊂ T1 ⊂ T0
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Application

35/39



Numerical Results: Spam Dataset
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Spam dataset

Dn ∈ R4601×58 with (xi , yi ) ∈ R57 × {1, 0} (spam or not).

All methods are performed using R program via R-studio available at:
https://www.rstudio.com/.

Dataset available at:
http://archive.ics.uci.edu/ml/machine-learning-databases/spambase/.

Details in practical session (tomorrow afternoon)!
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Numerical Results: Spam Dataset

Average k-NN LDA QDA Tree Pruned Tree
Error 0.10103 0.11212 0.16785 0.09953 0.10257
SD 0.01074 0.00993 0.01919 0.01197 0.01250

Table: Average miscalssification errors and standard errors over 100 runs.
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Summary and Further Methods
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Conclusion and Further Methods

Summary:

What is Machine Learning.

Definition, general setting and branches of ML.

Three methods of supervised classification.

Classification tree and k-NN seem to be the most preferable ones on the
Spam dataset.

Further (ensemble learning) methods:

Bagging and Boosting.

Random forest.

Neural networks...
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Thank you

Question?
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