The Introduction of Machine Learning and Some Methods of Supervised Classification

Sothea HAS Sorbonne Université

LPSM, Université Paris-Diderot sothea.has@lpsm.paris

May 20, 2019

Overview

- A. Introduction
 - 1. What's Machine Learning (ML)?
 - 2. Traditional Programming vs Machine Learning
 - 3. Branches of Machine Learning
- B. Supervised Classification
 - 1. Problem Formulation
 - 2. Some Well-known Results on Supervised Classification
 - 3. Empirical Setting
 - 4. k-Nearest Neighbors Classifier
 - 5. Linear & Quadratic Discriminant Analysis
 - 6. Classification Trees
- C. Application
 - 1. Numerical Results: Spam Dataset
 - 2. Summary and Further Methods

Introduction

What's Machine Learning (ML)?

An informal definition by **Arthur Samuel** (1959):

"the field of study that gives computers the ability to learn without being explicitly programmed".

What is Machine Learning (ML)?

A more formal definition by **Tom M. Mitchell** (1997):

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E".

Traditional Programming vs Machine Learning

Traditional Programming vs Machine Learning

Traditional programming:

Traditional Programming vs Machine Learning

Traditional programming:

Machine learning:

Branches of Machine Learning

Predicting or explaining a variable using another group of variables.

Understanding the structure of a group of variables.

General Setting of Machine Learning

Example:

- $X = (Age, Weight, Height, Salary) \in \mathbb{R}^4$.
- *Y* = Size of the ring finger or a favorite sport among {soccer, volleyball, basketball, boxing}.
- Classifying people according to *X*.

General Setting of Machine Learning

Example:

- $X = (Age, Weight, Height, Salary) \in \mathbb{R}^4$.
- Y = Size of the ring finger or a favorite sport among {soccer, volleyball, basketball, boxing}.
- Classifying people according to X.
- Supervised learning: learning a function $f : \mathcal{X} \to \mathcal{Y}$ such that

 $\mathbf{Y} \approx f(\mathbf{X})$

where

- Input or predictor: $X \in \mathcal{X} = \mathbb{R}^d$

General Setting of Machine Learning

Example:

- $X = (Age, Weight, Height, Salary) \in \mathbb{R}^4$.
- *Y* = Size of the ring finger or a favorite sport among {soccer, volleyball, basketball, boxing}.
- Classifying people according to X.
- Supervised learning: learning a function $f : \mathcal{X} \rightarrow \mathcal{Y}$ such that

 $\mathbf{Y} \approx f(\mathbf{X})$

where

- Input or predictor: $X \in \mathcal{X} = \mathbb{R}^d$
- Output or response variable: Y ∈ $\mathcal{Y} = \begin{cases} \mathbb{R} & : \text{Regression.} \\ \{1, 2, ..., K\} & : \text{Classification.} \end{cases}$
- Unsupervised learning: forget Y and focus only on X.
 - Dimensional reduction.
 - Grouping or clustering structure...

Supervised Classification

Motivation Example: Spam Dataset

- Size: 4601 × 58.
 - Column 1st-48th: % of the corresponding words ([0, 100]).
 - Column 49st-54th: % of the corresponding characters ([0, 100]).
 - Column 55th: average length of uninterrupted sequences of capital letters (≥ 1).
 - Column 56th: length of longest uninterrupted sequence of capital letters (ℕ).
 - Column 57th: total number of capital letters in the e-mail (\mathbb{N}) .
 - Column 58th: spam or non-spam.
- Available at:

http://archive.ics.uci.edu/ml/machine-learning-databases/spambase/

Objective: construct email spam filters based on this dataset.

$D_n =$	ID	make	 charSemicolon	 capitalTotal	type
	1	0	 0	 278	spam
	2	0.21	 0	 1028	spam
	4601	0	 0	 40	non-spam

Problem Formulation

• Input-output: $(X, Y) \in \mathcal{X} \times \mathcal{Y} = \mathbb{R}^{57} \times \{0, 1\}$

Input-output:
$$(X, Y) \in \mathcal{X} \times \mathcal{Y} = \mathbb{R}^{57} \times \{0, 1\}$$
 where
output $Y = \begin{cases} 1, & \text{spam} \\ 0, & \text{non-spam} \end{cases}$

• Find a classifier $f : \mathbb{R}^{57} \to \{0, 1\}$ minimizing the following misclassification error:

$$\mathcal{R}(f) = \mathbb{E}[\mathbb{1}_{\{f(X) \neq Y\}}] = \mathbb{P}[f(X) \neq Y]$$

 $\bullet \eta(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x).$

$$\eta(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x).$$

• A classifier g is optimal or known as Bayes classifier if

$$\mathcal{R}(g) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathcal{R}(f) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathbb{P}[f(\mathcal{X}) \neq Y] = \mathcal{R}^*$$

 $\eta(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x).$

• A classifier g is optimal or known as Bayes classifier if

$$\mathcal{R}(g) = \inf_{f: \mathcal{X} \to \{0,1\}} \mathcal{R}(f) = \inf_{f: \mathcal{X} \to \{0,1\}} \mathbb{P}[f(X) \neq Y] = \mathcal{R}^*$$

Bayes classifier [Devroye et al., 1997] is defined by,

$$g(x) = egin{cases} 1, & ext{if } \eta(x) \geq 0.5 \ 0, & ext{Otherwise} \end{cases}$$

 $\eta(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x).$

• A classifier g is optimal or known as Bayes classifier if

$$\mathcal{R}(g) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathcal{R}(f) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathbb{P}[f(X) \neq Y] = \mathcal{R}^*$$

Bayes classifier [Devroye et al., 1997] is defined by,

$$g(x) = egin{cases} 1, & ext{if } \eta(x) \geq 0.5 \ 0, & ext{Otherwise} \end{cases}$$

Looks easy right?

 $\eta(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x).$

• A classifier g is optimal or known as Bayes classifier if

$$\mathcal{R}(g) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathcal{R}(f) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathbb{P}[f(X) \neq Y] = \mathcal{R}^*$$

Bayes classifier [Devroye et al., 1997] is defined by,

$$g(x) = egin{cases} 1, & ext{if } \eta(x) \geq 0.5 \ 0, & ext{Otherwise} \end{cases}$$

Looks easy right? But wait!

 $\eta(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x).$

• A classifier g is optimal or known as Bayes classifier if

$$\mathcal{R}(g) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathcal{R}(f) = \inf_{f:\mathcal{X} \to \{0,1\}} \mathbb{P}[f(X) \neq Y] = \mathcal{R}^*$$

Bayes classifier [Devroye et al., 1997] is defined by,

$$g(x) = egin{cases} 1, & ext{if } \eta(x) \geq 0.5 \ 0, & ext{Otherwise} \end{cases}$$

- Looks easy right? But wait!
- Look at this guy: $\eta(x) = \mathbb{P}(Y = 1 | X = x)$.

 $\eta(x) = \mathbb{E}[Y|X = x] = \mathbb{P}(Y = 1|X = x).$

• A classifier g is optimal or known as Bayes classifier if

$$\mathcal{R}(g) = \inf_{f: \mathcal{X} \to \{0,1\}} \mathcal{R}(f) = \inf_{f: \mathcal{X} \to \{0,1\}} \mathbb{P}[f(X) \neq Y] = \mathcal{R}^*$$

Bayes classifier [Devroye et al., 1997] is defined by,

$$g(x) = egin{cases} 1, & ext{if } \eta(x) \geq 0.5 \ 0, & ext{Otherwise} \end{cases}$$

- Looks easy right? But wait!
- Look at this guy: $\eta(x) = \mathbb{P}(Y = 1 | X = x)$.
- In practice, η is intractable!

• Suppose all the observations (emails) $D_n = \{(x_i, y_i)_{i=1}^n\}$ (n = 4601, d = 57) are *iid* copies of (X, Y).

• Suppose all the observations (emails) $D_n = \{(x_i, y_i)_{i=1}^n\}$ (n = 4601, d = 57) are *iid* copies of (X, Y).

Empirical misclassification error:

$$\mathcal{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{f(x_i) \neq y_i\}}$$

• Suppose all the observations (emails) $D_n = \{(x_i, y_i)_{i=1}^n\}$ (*n* = 4601, *d* = 57) are *iid* copies of (*X*, *Y*).

Empirical misclassification error:

$$\mathcal{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{f(x_i) \neq y_i\}}$$

Objective: finding a data-based classifier f_n minimizing the empirical error of the testing set (new unseen observation).

11/30

k-Nearest Neighbors Classifier

k-Nearest Neighbors Classifier (k-NN)

• $d(x, y) = ||x - y||_2^2$ defined on $\mathcal{X}(=\mathbb{R}^{57})$.

k-Nearest Neighbors Classifier (k-NN)

- $d(x,y) = ||x y||_2^2$ defined on $\mathcal{X}(=\mathbb{R}^{57})$.
- A new observation (email) x, define $N_k(x) = \{x_{(i)}\}_{i=1}^k$ i.e.,

$$d(x, x_{(1)}) \leq d(x, x_{(2)}) \leq ... \leq d(x, x_{(k)})$$

k-Nearest Neighbors Classifier (k-NN)

■ $d(x,y) = ||x-y||_2^2$ defined on $\mathcal{X}(=\mathbb{R}^{57})$. ■ A new observation (email) x, define $N_k(x) = \{x_{(i)}\}_{i=1}^k$ i.e.,

$$d(x, x_{(1)}) \leq d(x, x_{(2)}) \leq ... \leq d(x, x_{(k)})$$

• The prediction of x by k-NN classifier = majority class among $\{y_{(i)}\}_{i=1}^k$.

1-Nearest Neighbor Classifier

Figure: An example taken from [Hastie et al., 2009]

15-Nearest Neighbor Classifier

Figure: An example taken from [Hastie et al., 2009]

Figure: Representation of 5-folds cross-validation.

Choosing k using Cross-Validation Technique

K-folds cross-validation:

I Randomly split D_n into K folds.

2 for
$$j = 1, 2, ..., k_{max}$$
:
for $i = 1, 2, ..., K$:

- Validation (testing) set: D_{n_i} .
- Training set: the remaining ones $(D_n D_{n_i})$.
- Compute the error:

$$\mathcal{R}_j^i = rac{1}{|D_{n_i}|} \sum_{\mathsf{x}_\ell \in D_{n_i}} \mathbbm{1}_{\{j \text{-}\mathsf{NN}(\mathsf{x}_\ell)
eq \mathsf{y}_\ell\}}$$

Compute: $\mathcal{R}_j = \frac{1}{K} \sum_{i=1}^{K} \mathcal{R}_j^i$ **3** $k = \operatorname{argmin}_{1 \le j \le k_{\max}} \mathcal{R}_j$

Choosing k using Cross-Validation Technique

K-folds cross-validation:

I Randomly split D_n into K folds.

2 for
$$j = 1, 2, ..., k_{max}$$
:
for $i = 1, 2, ..., K$:

- Validation (testing) set: D_{n_i} .
- Training set: the remaining ones $(D_n D_{n_i})$.
- Compute the error:

$$\mathcal{R}_j^i = rac{1}{|D_{n_i}|} \sum_{\mathsf{x}_\ell \in D_{n_i}} \mathbbm{1}_{\{j \text{-}\mathsf{NN}(\mathsf{x}_\ell)
eq \mathsf{y}_\ell\}}$$

Compute:
$$\mathcal{R}_j = \frac{1}{K} \sum_{i=1}^{K} \mathcal{R}_j^i$$

| $k = \operatorname{argmin}_{1 \le j \le k_{\max}} \mathcal{R}_j$

Remark:

3

• X should be renormalized to erase the influence of the units.

Choosing k using Cross-Validation Technique

K-folds cross-validation:

I Randomly split D_n into K folds.

2 for
$$j = 1, 2, ..., k_{max}$$
:
for $i = 1, 2, ..., K$:

- Validation (testing) set: D_{n_i} .
- Training set: the remaining ones $(D_n D_{n_i})$.
- Compute the error:

$$\mathcal{R}_j^i = rac{1}{|D_{n_i}|} \sum_{\mathsf{x}_\ell \in D_{n_i}} \mathbbm{1}_{\{j \text{-}\mathsf{NN}(\mathsf{x}_\ell)
eq \mathsf{y}_\ell\}}$$

Compute:
$$\mathcal{R}_j = \frac{1}{K} \sum_{i=1}^{K} \mathcal{R}_j^i$$

 $k = \operatorname{argmin}_{1 \le j \le k_{\max}} \mathcal{R}_j$

Remark:

3

- X should be renormalized to erase the influence of the units.
- Other options of *d*.

Review about Gaussian Distribution

 $X \sim \mathcal{N}_d(\mu, \Sigma)$ if it has the following density:

$$\phi(x;\mu,\Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right]$$

Example:

$$\mu_{1} = \begin{bmatrix} 1\\1 \end{bmatrix}, \Sigma_{1} = \begin{bmatrix} 4 & 0.1\\0.1 & 1 \end{bmatrix} \qquad \mu_{2} = \begin{bmatrix} 1\\10 \end{bmatrix}, \Sigma_{2} = \begin{bmatrix} 1 & -1\\-1 & 2 \end{bmatrix}$$
$$\mu_{3} = \begin{bmatrix} 10\\10 \end{bmatrix}, \Sigma_{3} = \begin{bmatrix} 2 & 1\\1 & 1 \end{bmatrix} \qquad \mu_{4} = \begin{bmatrix} 10\\1 \end{bmatrix}, \Sigma_{4} = \begin{bmatrix} 2 & 0\\0 & 2 \end{bmatrix}$$

RUPP - Presentation - Maths in PCA

Recall that $\eta(x) = \mathbb{P}(Y = 1 | X = x)$.

Recall that $\eta(x) = \mathbb{P}(Y = 1 | X = x)$.

- $\mathbb{P}(Y = k | X = x)$: Posterior probability $(k \in \{0, 1\})$.
- $p_k = \mathbb{P}(Y = k)$: Prior probability.
- $f_k(x) = \mathbb{P}(X = x | Y = k)$: class-conditional probability.

Recall that $\eta(x) = \mathbb{P}(Y = 1 | X = x)$.

• $\mathbb{P}(Y = k | X = x)$: Posterior probability ($k \in \{0, 1\}$).

•
$$p_k = \mathbb{P}(Y = k)$$
: Prior probability.

• $f_k(x) = \mathbb{P}(X = x | Y = k)$: class-conditional probability.

Bayes's formula:

$$\mathbb{P}(Y = k | X = x) = \frac{p_k f_k(x)}{p_0 f_0(x) + p_1 f_1(x)}, k \in \{0, 1\}$$

Recall that
$$\eta(x) = \mathbb{P}(Y = 1 | X = x)$$
.

• $\mathbb{P}(Y = k | X = x)$: Posterior probability ($k \in \{0, 1\}$).

•
$$p_k = \mathbb{P}(Y = k)$$
: Prior probability.

• $f_k(x) = \mathbb{P}(X = x | Y = k)$: class-conditional probability.

Bayes's formula:

$$\mathbb{P}(Y = k | X = x) = \frac{p_k f_k(x)}{p_0 f_0(x) + p_1 f_1(x)}, k \in \{0, 1\}$$

(H₁) Gaussian hypothesis:

$$f_k(x) = \phi(x; \mu_k, \Sigma_k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right]$$

In general (K classes):

In general (K classes): Maximizing $\mathbb{P}(Y = k | X = x)$

In general (K classes): Maximizing $\mathbb{P}(Y = k | X = x) \Leftrightarrow \max p_k f_k(x)$

In general (K classes): Maximizing $\mathbb{P}(Y = k | X = x) \Leftrightarrow \text{maximizing } p_k f_k(x) \Leftrightarrow \text{maximizing } \log(p_k f_k(x))$

In general (K classes): Maximizing $\mathbb{P}(Y = k | X = x) \Leftrightarrow$ maximizing $p_k f_k(x)$ \Leftrightarrow maximizing $\log(p_k f_k(x))$ \Leftrightarrow maximizing:

$$\delta_k^{(q)}(x) = -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log(p_k) \quad (QDA)$$

In general (K classes): Maximizing $\mathbb{P}(Y = k | X = x) \Leftrightarrow$ maximizing $p_k f_k(x)$ \Leftrightarrow maximizing $\log(p_k f_k(x))$ \Leftrightarrow maximizing: (a) 1 T 1

$$\delta_k^{(q)}(x) = -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log(p_k) \quad (QDA)$$

(H₂) Homoscedasticity hypothesis:

$$\Sigma_k = \Sigma, \forall k$$

In general (K classes): Maximizing $\mathbb{P}(Y = k | X = x) \Leftrightarrow$ maximizing $p_k f_k(x)$ \Leftrightarrow maximizing $\log(p_k f_k(x))$ \Leftrightarrow maximizing:

$$\delta_k^{(q)}(x) = -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log(p_k) \quad (QDA)$$

 (H_2) Homoscedasticity hypothesis:

$$\Sigma_k = \Sigma, \forall k$$

Thus, we maximize:

$$\delta_k^{(\ell)}(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log(p_k) \quad (LDA)$$

In general (K classes): Maximizing $\mathbb{P}(Y = k | X = x) \Leftrightarrow$ maximizing $p_k f_k(x)$ \Leftrightarrow maximizing $\log(p_k f_k(x))$ \Leftrightarrow maximizing:

$$\delta_k^{(q)}(x) = -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log(p_k) \quad (QDA)$$

(H₂) Homoscedasticity hypothesis:

$$\Sigma_k = \Sigma, \forall k$$

Thus, we maximize:

$$\delta_k^{(\ell)}(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log(\rho_k) \quad (LDA)$$

Particularly,

$$\begin{array}{ll} x \text{ is a spam iff } \delta_1^{(\ell)}(x) > \delta_0^{(\ell)}(x) & (LDA) \\ x \text{ is a spam iff } \delta_1^{(q)}(x) > \delta_0^{(q)}(x) & (QDA) \end{array}$$

In practice (K classes):

$$\delta_{k}^{(\ell)}(x) = x^{T} \Sigma^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k} + \log(p_{k})$$
(LDA)
$$\delta_{k}^{(q)}(x) = -\frac{1}{2} \log(|\Sigma_{k}|) - \frac{1}{2} (x - \mu_{k})^{T} \Sigma_{k}^{-1} (x - \mu_{k}) + \log(p_{k})$$
(QDA)

In practice (K classes):

$$\delta_{k}^{(\ell)}(x) = x^{T} \Sigma^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k} + \log(p_{k})$$
(LDA)
$$\delta_{k}^{(q)}(x) = -\frac{1}{2} \log(|\Sigma_{k}|) - \frac{1}{2} (x - \mu_{k})^{T} \Sigma_{k}^{-1} (x - \mu_{k}) + \log(p_{k})$$
(QDA)

We estimate:

 $\hat{p}_{k} = n_{k}/n \text{ where } n_{k} \text{ is the number of points in class } k$ $\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{y_{i}=k} x_{i}$ $\hat{\Sigma} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{y_{i}=k} (x_{i} - \mu_{k})(x_{i} - \mu_{k})^{T} \qquad (LDA)$ $\hat{\Sigma}_{k} = \frac{1}{n-1} \sum_{y_{i}=k} (x_{i} - \mu_{k})(x_{i} - \mu_{k})^{T} \qquad (QDA)$

Misclassification error:

0.045

0.04

Tree Principle:

- Construct a recursive partition of D_n by splitting at each time a certain **variable** at a certain **value**.
- Prediction = majority vote.

Remarks:

- Easy to interpret.
- Quality of prediction depends on the structure of the tree.
- Issue: finding an optimal tree is hard!

Remarks:

- Easy to interpret.
- Quality of prediction depends on the structure of the tree.
- Issue: finding an optimal tree is hard!

Construction:

- Branching or growing (greedy top-down approach).
- Pruning (bottom-up approach).

Remarks:

- Easy to interpret.
- Quality of prediction depends on the structure of the tree.
- Issue: finding an optimal tree is hard!

Construction:

- Branching or growing (greedy top-down approach).
- Pruning (bottom-up approach).

Available algorithms:

- ID3 (Iterative Dichotomiser 3).
- C4.5 (successor of ID3).
- CART (Classification And Regression Tree).
- Others...

Branching or Growing a Tree

Branching (top-down):

- Start from the root: D_n .
- Recursively split those regions along a certain variable at a certain value.
- Split so that the two parts are as **homogeneous** or **pure** as possible.

24/39

Branching or Growing a Tree

At the *j*th split:

R_j: the region to be split.
 $\hat{p}_j^k = \frac{1}{|R_j|} \sum_{x_i \in R_j} \mathbb{1}_{\{y_i = k\}}$: probability of class k in R_j.
 $k^* = k_j^* = \operatorname{argmax}_{1 \le k \le K} \hat{p}_j^k$: majority class of region R_j.

Branching or Growing a Tree

At the *j*th split:

R_j: the region to be split.
 $\hat{p}_j^k = \frac{1}{|R_j|} \sum_{x_i \in R_j} \mathbb{1}_{\{y_i = k\}}$: probability of class k in R_j .
 $k^* = k_j^* = \operatorname{argmax}_{1 \le k \le K} \hat{p}_j^k$: majority class of region R_j .

Splitting criteria (impurity measures):

- Misclassification error: $\frac{1}{|R_j|} \sum_{x_i \in R_j} \mathbb{1}_{\{y_i \neq k_j^*\}} = 1 \hat{p}_j^{k^*}$.
- Gini index: $\sum_{k \neq k'} \hat{p}_j^k \hat{p}_j^{k'} = \sum_{k=1}^K \hat{p}_j^k (1 \hat{p}_j^k).$

• Cross-entropy or deviance: $-\sum_{k=1}^{K} \hat{p}_j^k \log(\hat{p}_j^k)$.

RUPP - Presentation - Maths in PCA

25/30

Splitting procedure:

- Search for $x^{(i)}$ and t_j minimizing one of these criteria.
- Split R_j into two parts: $R_i^{(1)} = \{x : x^{(i)} \le t_j\}$ and $R_i^{(2)} = \{x : x^{(i)} > t_j\}$.

Continue until a stopping criterion is met.

Splitting procedure:

- Search for $x^{(i)}$ and t_j minimizing one of these criteria.
- Split R_j into two parts: $R_j^{(1)} = \{x : x^{(i)} \le t_j\}$ and $R_j^{(2)} = \{x : x^{(i)} > t_j\}$.
- Continue until a stopping criterion is met.

Stopping criteria:

- Depth of the tree.
- Minimum number of points in a region.

Splitting procedure:

- Search for $x^{(i)}$ and t_j minimizing one of these criteria.
- Split R_j into two parts: $R_j^{(1)} = \{x : x^{(i)} \le t_j\}$ and $R_j^{(2)} = \{x : x^{(i)} > t_j\}$.
- Continue until a stopping criterion is met.

Stopping criteria:

- Depth of the tree.
- Minimum number of points in a region.

Construction aspect:

- Too complex tree may lead to over-fitting.
- Too simple tree might be too **weak** for prediction.

Pruning a Tree

Pruning (bottom-up):

- Aim to find a more effectively simple subtree from a given complex tree.
- Merging or collapsing nodes to shorten the tree.
- Based on dynamic programming principle.

Cost complexity for a tree T:

$$C_{\lambda}(T) = \sum_{j=1}^{|T|} n_j Q_j(T) + \lambda |T|$$

$$C_{\lambda}(T) = \sum_{j=1}^{|T|} n_j Q_j(T) + \lambda |T|$$

where

n_j: number of points in region R_j .

$$C_{\lambda}(T) = \sum_{j=1}^{|T|} n_j Q_j(T) + \lambda |T|$$

where

- n_j : number of points in region R_j .
- $Q_j(T)$: either of the splitting criteria.

$$C_{\lambda}(T) = \sum_{j=1}^{|T|} n_j Q_j(T) + \lambda |T|$$

where

- **n**_j: number of points in region R_j .
- $Q_j(T)$: either of the splitting criteria.
- |T|: number of nodes or leaves of T.

$$C_{\lambda}(T) = \sum_{j=1}^{|T|} n_j Q_j(T) + \lambda |T|$$

where

- n_j : number of points in region R_j .
- $Q_j(T)$: either of the splitting criteria.
- |T|: number of nodes or leaves of T.
- λ: tuning parameter (trad-off between the size of the tree and goodness of fit to the data).

Pruning a Tree

Pruning procedure for a given λ :

1 Start with a complex tree T_0 .

for
$$j = 1, 2, ..., |T_0| - 1$$
:

• Weakest link pruning: subtree of size $|T_0| - j$.

• Choose T_i with the smallest per-node increase in $\sum_{i=1}^{|T_0|-j} n_i Q_i(T)$.

2 We produce a finite sequence of trees: $T_0 \supset T_1 \supset ... \supset T_{|T_0|-1}$. 3 Pick the one minimizes $C_{\lambda}(T)$.

(See, for example, [Breiman et al., 1984] and [Hastie et al., 2009])

Pruning a Tree

Pruning procedure for a given λ :

1 Start with a complex tree T_0 .

for
$$j = 1, 2, ..., |T_0| - 1$$
:

• Weakest link pruning: subtree of size $|T_0| - j$.

• Choose T_j with the smallest per-node increase in $\sum_{i=1}^{|T_0|-j} n_i Q_i(T)$.

2 We produce a finite sequence of trees: $T_0 \supset T_1 \supset ... \supset T_{|T_0|-1}$. 3 Pick the one minimizes $C_{\lambda}(T)$.

(See, for example, [Breiman et al., 1984] and [Hastie et al., 2009]) **Remark**: λ is chosen using cross-validation technique.

29/30

A complex tree T_0

A complex tree with 8 nodes

A subtree $\mathit{T}_1 \subset \mathit{T}_0$

A pruned tree with 7 nodes

A subtree $T_2 \subset T_1 \subset T_0$

A pruned tree with 6 nodes

An Example of the Procedure

A subtree $T_4 \subset T_3 \subset T_2 \subset T_1 \subset T_0$

A pruned tree with 4 nodes

An Example of the Procedure

A subtree $T_5 \subset T_4 \subset T_3 \subset T_2 \subset T_1 \subset T_0$

A pruned tree with 3 nodes

Application

Numerical Results: Spam Dataset

- $D_n \in \mathbb{R}^{4601 \times 58}$ with $(x_i, y_i) \in \mathbb{R}^{57} \times \{1, 0\}$ (spam or not).
- All methods are performed using R program via R-studio available at: https://www.rstudio.com/.
- Dataset available at: http://archive.ics.uci.edu/ml/machine-learning-databases/spambase/.
- Details in practical session (tomorrow afternoon)!

Numerical Results: Spam Dataset

Boxplots of misclassification error over 100 runs

Average	k-NN	LDA	QDA	Tree	Pruned Tree
Error	0.10103	0.11212	0.16785	0.09953	0.10257
SD	0.01074	0.00993	0.01919	0.01197	0.01250

Table: Average miscalssification errors and standard errors over 100 runs.

Summary and Further Methods

Conclusion and Further Methods

Summary:

Conclusion and Further Methods

Summary:

• What is Machine Learning.

- What is Machine Learning.
- Definition, general setting and branches of ML.

- What is Machine Learning.
- Definition, general setting and branches of ML.
- Three methods of supervised classification.

- What is Machine Learning.
- Definition, general setting and branches of ML.
- Three methods of supervised classification.
- Classification tree and k-NN seem to be the most preferable ones on the Spam dataset.

- What is Machine Learning.
- Definition, general setting and branches of ML.
- Three methods of supervised classification.
- Classification tree and k-NN seem to be the most preferable ones on the Spam dataset.

Further (ensemble learning) methods:

- What is Machine Learning.
- Definition, general setting and branches of ML.
- Three methods of supervised classification.
- Classification tree and k-NN seem to be the most preferable ones on the Spam dataset.

Further (ensemble learning) methods:

Bagging and Boosting.

- What is Machine Learning.
- Definition, general setting and branches of ML.
- Three methods of supervised classification.
- Classification tree and k-NN seem to be the most preferable ones on the Spam dataset.

Further (ensemble learning) methods:

- Bagging and Boosting.
- Random forest.

- What is Machine Learning.
- Definition, general setting and branches of ML.
- Three methods of supervised classification.
- Classification tree and k-NN seem to be the most preferable ones on the Spam dataset.

Further (ensemble learning) methods:

- Bagging and Boosting.
- Random forest.
- Neural networks...

References

- Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classification and Regression Trees. Wadsworth.
- Devroye, L., Györfi, L., and Lugosi, G. (1997). A Probabilistic Theory of Pattern Recognition. Springer.
 - Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002). *A Distribution-Free Theory of Nonparametric Regression*. Springer.
- Hastie, T., Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning. Springer.

Thank you

Question?

