

INTRODUCTION & OBJECTIVE

Introduction

Observations from superpressure balloons of the Strateole 2 campaign provide accurate estimates of Gravity Wave Momentum Fluxes (GWMF), see Corcos et al. (2021).

Figure 1: Balloons' trajectories of the first campaign.

Prior related studies:

• Lott et al. (2023) compared several gravity wave drag parameterizations against the observations.

• Has et al. (2024) applied tree-based ensemble ML and inputs from ERA5 to reconstruct the balloonobserved GWMFs.

Objective

• How can we improve the estimation made by tree-based models of Has et al. (2024)?

• Is there any complementarity between ML by Has et al. (2024) & parameterizations by Lott et al. (2023)?

Aggregations of Parametrizations and Machine Learning for Gravity Wave Momentum Flux Reconstruction Sothea HAS¹, Riwal PLOUGONVEN¹, Aurélie FISCHER², François LOTT³, Raj RANI³

¹Laboratoire de Météorologie Dynamique, École Normale Supérieure, IPSL, Paris, France ²CNRS/Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Université Paris Cité, France ³Laboratoire de Météorologie Dynamique (LMD)/IPSL, PSL Research Institute, Paris, France

METHODOLOGY

Aggregation methods 3

parameterizations are treated as trained ML models.

3.1

3.2

Figure 4: Input-ouput trade-off aggregation (Fischer and Mougeot, 2019).

Aggregation 3 3.3

Figure 5: Super learner (van der Laan et al., 2007).

REFERENCES

Milena Corcos, Albert Hertzog, Riwal Plougonven, and Aurélien Podglajen. Observation of gravity waves at the tropical tropopause using superpressure balloons. Journal of Geophysical Research: Atmospheres, 126(15):e2021JD035165, 2021.

Aurélie Fischer and Mathilde Mougeot. Aggregation using input-output trade-off. Journal of Statistical Planning and Inference, 200:1–19, 2019. ISSN 0378-3758. doi: https://doi.org/10.1016/j.jspi.2018.08.001.

Sothea HAS. Gradient cobra: A kernel-based consensual aggregation for regression: Kernel-based aggregation for regression. Journal of Data Science, Statistics, and Visualisation, 3(2), Oct. 2023. doi: 10.52933/jdssv.v3i2.70. URL https://jdssv.org/index.php/jdssv/article/view/70.

Sothea Has, Riwal Plougonven, Aurélie Fischer, Raj Rani, François Lott, Albert Hertzog, Aurélien Podglajen, and Milena Corcos. Reconstructing balloon-observed gravity wave momentum fluxes using machine learning and input from era5. Accepted at JGR: Atmosphere. 2024.

Francois Lott, Raj Rani, Aurélien Podglajen, Francis Codron, Lionel Guez, Albert Hertzog, and Riwal Plougonven. Direct comparison between a non-orographic gravity wave drag scheme and constant level balloons. *Journal of Geophysical Research: Atmospheres*, 128(4):e2022JD037585, 2023.

Mark J. van der Laan, Eric C Polley, and Alan E. Hubbard. Super learner. Statistical Applications in Genetics and Molecular Biology, 6(1), 2007. doi: doi:10.2202/1544-6115.1309. URL https://doi.org/10.2202/1544-6115.1309.

Research funding: This work is supported by Institut des Mathématiques pour la Planète Terre (IMPT). It has also received support from ANR project BOOST3R (ANR-17-CE01-0016-01), the French-American project Strateole 2 (CNES), and Virtual Earth System Research Institute (VESRI) Schmidt Futures (DataWave) project.

RESULTS, DISCUSSION & FURTHER EXPLORATION

Discussion

• Aggregation 2 often does a better job com-

• Improved in catching the peaks but suf-

• There seems to be no significant complementarity between ML & parameterizations.

Balloons sampled particular realizations of GWMFs over an extensive grid of ERA5's large-scale flow. How about aiming for the

Figure 7: A prediction on ballon 2 of the 1st campaign (2019) using Bayesian Neural Network