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INTRODUCTION & OBJECTIVE

1 Introduction
Observations from superpressure balloons of the Stra-
teole 2 campaign provide accurate estimates of Grav-
ity Wave Momentum Fluxes (GWMF), see Corcos
et al. (2021).

Figure 1: Balloons’ trajectories of the first campaign.

Prior related studies:

• Lott et al. (2023) compared several gravity wave
drag parameterizations against the observations.

• Has et al. (2024) applied tree-based ensemble ML
and inputs from ERA5 to reconstruct the balloon-
observed GWMFs.

Figure 2: Results from Has et al. (2024) and Lott et al. (2023).

2 Objective

• How can we improve the estimation made
by tree-based models of Has et al. (2024)?

• Is there any complementarity between ML by
Has et al. (2024) & parameterizations by Lott
et al. (2023)?

METHODOLOGY

3 Aggregation methods
MLs are trained using the 2nd campaign (2021), and
parameterizations are treated as trained ML models.

3.1 Aggregation 1

Training
data

For training
basic models

For creating
predicted
features

Basic models
r = (r1, . . . , rM )

Predicted featuresr1(x1) . . . rM (x1)
...

. . .
...

r1(xn) . . . rM (xn)


agg1(x) =

∑n
i=1 Wi(x)yi =

∑n
i=1

Kh(∥r(x)−r(xi)∥)∑n
j=1 Kh(∥r(x)−r(xj)∥)yi

Figure 3: Gradient COBRA method (HAS, 2023).

3.2 Aggregation 2
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Figure 4: Input-ouput trade-off aggregation (Fischer and
Mougeot, 2019).

3.3 Aggregation 3
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Figure 5: Super learner (van der Laan et al., 2007).

RESULTS, DISCUSSION & FURTHER EXPLORATION

4 Results

Figure 6: Results of ML, Parameterizations, and aggregations.

5 Discussion
• Aggregation 2 often does a better job com-
pared to the other two.

• Improved in catching the peaks but suf-
fered in terms of correlations.

• There seems to be no significant comple-
mentarity between ML & parameterizations.

6 Further exploration

Balloons sampled particular realizations of
GWMFs over an extensive grid of ERA5’s
large-scale flow. How about aiming for the
distribution instead?

Figure 7: A prediction on ballon 2 of the 1st
campaign (2019) using Bayesian Neural Network
trained on data of the 2nd campaign (2021).
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