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Abstract18

Global atmospheric models rely on parameterizations to capture the effects of gravity19

waves (GWs) on middle atmosphere circulation. As they propagate upwards from the20

troposphere, the momentum fluxes associated with these waves represent a crucial yet21

insufficiently constrained component. The present study employs three tree-based en-22

semble machine learning (ML) techniques to probe the relationship between large-scale23

flow and small-scale GWs within the tropical lower stratosphere. The measurements col-24

lected by eight superpressure balloons from the Strateole 2 campaign, comprising a cu-25

mulative observation period of 680 days, provide valuable estimates of the gravity wave26

momentum fluxes (GWMFs). Multiple explanatory variables, including total precipita-27

tion, wind, and temperature, were interpolated from the ERA5 reanalysis at each bal-28

loon’s location. The ML methods are trained on data from seven balloons and subse-29

quently utilized to estimate reference GWMFs of the remaining balloon. We observed30

that parts of the GW signal are successfully reconstructed, with correlations typically31

around 0.54 and exceeding 0.70 for certain balloons. The models show significantly dif-32

ferent performances from one balloon to another, whereas they show rather compara-33

ble performances for any given balloon. In other words, limitations from training data34

are a stronger constraint than the choice of the ML method. The most informative in-35

puts generally include precipitation and winds near the balloons’ level. However, differ-36

ent models highlight different informative variables, making physical interpretation un-37

certain. This study also discusses potential limitations, including the intermittent na-38

ture of GWMFs and data scarcity, providing insights into the challenges and opportu-39

nities for advancing our understanding of these atmospheric phenomena.40

Plain Language Summary41

Part of the atmosphere’s large-scale circulation results from motions that are not42

resolved, or partly resolved, by weather or climate models. These include internal grav-43

ity waves, with horizontal scales from a few to hundreds of kilometers. The main sources44

occur in the troposphere, such as flow over mountains and cloud development. Their three-45

dimensional propagation induces major aggregated impacts in the stratosphere and meso-46

sphere, forcing key aspects of the circulation. This forcing is accounted for in climate mod-47

els by ‘parameterizations’, that mimics the effect of the unresolved waves based on the48

large-scale, resolved flow. These parameterizations necessarily retain crude approxima-49

tions and introduce significant uncertainty in the models. For GWs, sources are a ma-50

jor uncertainty. This study makes use of the high-altitude balloon campaign Strateole51

2 (Oct. 2019-Feb. 2020). Eight balloons circled Earth at heights around 18 to 20 km,52

providing unique observations of the GWs. These are used as targets for machine learn-53

ing (ML) methods that take as inputs the information from outputs of a numerical weather54

prediction model describing the large-scale flow. The successes and difficulties of ML pro-55

vide insights which can guide improvements of parameterizations, such as the most in-56

formative large-scale variables for estimating the unresolved waves.57

1 Introduction58

Climate models and Numerical Weather Prediction models resolve a widening range59

of atmospheric processes as computing power increases, enabling finer spatial resolution.60

Subgrid-scale processes persist nonetheless, and efforts to improve and constrain them61

better are essential. Internal gravity waves constitute one of these subgrid-scale processes,62

with important implications for the circulation and variability of the middle atmosphere63

(Fritts & Alexander, 2003). Motivations for improved modeling of the stratosphere in-64

cludes climate (e.g. Solomon et al. (2010); Kremser et al. (2016)) but also predictabil-65

ity on shorter time scales (F. Vitart and A.W. Robertson, 2018; Butchart, 2022).66
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Gravity waves occur on scales ranging from a few to several hundreds of kilome-67

ters. An important effect stems from their vertical propagation: gravity waves are re-68

sponsible for vertical transfers of momentum from lower layers (troposphere: denser and69

with more gravity wave sources) to upper layers (stratosphere and beyond), where they70

constitute an essential driver of the overall circulation (Fritts & Alexander, 2003). A sig-71

nificant part of the spectrum of gravity waves has been and remains unresolved in global72

models, requiring these effects to be represented by parameterizations (Kim et al., 2003).73

Models display sensitivity to these, calling for coordinated efforts to better constrain these74

parameterizations from both observations and high-resolution modeling (Alexander et75

al., 2010).76

A global comparison of observed, resolved and parameterized gravity wave momen-77

tum fluxes was carried out by Geller et al. (2013), highlighting significant discrepancies.78

Although GWs parameterizations are now used routinely in climate models, their val-79

idation against in situ observations remains a challenge. There exist global observations80

derived from satellite observations (e.g. Ern et al. (2018)), but there are limitations on81

the wavelengths that can be observed, and significant assumptions are needed to indi-82

rectly deduce important quantities like the momentum fluxes from temperature fluctu-83

ations, using polarization relations (Alexander et al., 2010; Ern et al., 2014). For these84

reasons superpressure balloons have been highlighted as a valuable and accurate source85

of information on gravity wave momentum fluxes (Geller et al., 2013). A downside of su-86

perpressure balloon observations is their very sparse sampling of the lower stratosphere:87

despite a broad coverage of the Southern Ocean (Jewtoukoff et al., 2015) and of the equa-88

torial belt (Corcos et al., 2021), each balloon flight provides only local information: one89

time series along its trajectory.90

There are fundamental difficulties in validating parameterizations of gravity waves:91

the purpose of a parameterization is to provide the forcing to the large-scale which is miss-92

ing because of unresolved processes. Ideally, one would wish to know what this forcing93

should be and validate this outcome of parameterizations. Unfortunately, this forcing94

cannot be directly observed. Validating parameterizations by the realism of the clima-95

tology and variability of the atmospheric circulation in global models constitutes a first96

step, but is not a severe test and allows for compensating errors between parameterized97

processes (Plougonven et al., 2020). More stringent tests involve comparisons to obser-98

vations (de la Camara et al., 2014; Trinh et al., 2016). Recently, direct comparisons be-99

tween observed and parameterized gravity waves have been carried out on the scale of100

daily variations rather than at the level of general statistical characteristics (Lott et al.,101

2023). The large-scale environment was described using the ERA5 reanalyses (Hersbach102

et al., 2020), providing the background fields necessary to emulate the parameterization103

of convectively generated waves of Lott & Guez (2013), which is the parameterization104

used in the climate model of IPSL (Institut Pierre Simon Laplace, Boucher et al. (2020)).105

The comparison was quite encouraging, with the gravity wave momentum fluxes hav-106

ing the right order of magnitude, and an appropriate intermittency.107

An essential aspect, and fundamental issue, to keep in mind when comparing ob-108

served and modeled gravity wave momentum fluxes is their strong intermittency: in time109

series of GWMF, one commonly finds short, intense peaks corresponding to a strong grav-110

ity wave event, surrounded by considerably weaker values. This has been highlighted in111

the long ‘tail’ of the Probability Density Function (PDF) of the GWMF (Alexander et112

al., 2010; Hertzog et al., 2012), and quantified in simulations and observations (Plougonven113

et al., 2013; Wright et al., 2013; Ern et al., 2022). This intermittency further contributes114

to making the parameterization of gravity waves a challenging task.115

For the improvement of parameterizations in general (not only those of gravity waves),116

machine learning methods provide an array of possibilities. These have been explored117

in different directions:118
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• Machine learning can enable the emulation of parameterizations, leading to sig-119

nificant computational time savings (Chantry et al., 2021; de Burgh-Day & Leeuwen-120

burg, 2023).121

• Machine learning can help to capture the relationship between large-scale fields122

and the unresolved process, as illustrated in the case of convection by Gentine et123

al. (2018). For exploration, the dataset used as the truth came from a higher-resolution124

simulation, not from observations; obtaining observationally based knowledge of125

the effects to be parameterized remains a major challenge.126

• Machine learning can be used to explore the relationship between the large-scale127

flow and the resulting small-scale waves, as has been done for orographic waves128

over Northern Japan (Matsuoka et al., 2020). Again, both the target and the in-129

puts are modelled fields, but at different resolutions.130

• As a precursor to a data-driven parameterization that would have learned from131

observations, a machine learning-based emulator of a parameterization for grav-132

ity waves has been used in a climate model, including under climate change con-133

ditions (Espinosa et al., 2022).134

The purpose and scope of the present study is to probe the relationship between135

the large-scale flow and gravity waves in the Tropics, using machine learning approaches136

to address fundamental issues: what fraction of the GWMF can be determined from knowl-137

edge of the large-scale flow, and what fraction remains as stochastic? Which large-scale138

variables are most informative, and do they match with our common understanding of139

underlying gravity wave parameterizations? The present study belongs to the third cat-140

egory outlined above for the uses of machine learning (the purpose is not to produce a141

new parameterization, nor to emulate an existing one). With similar goals, Amiramjadi142

et al. (2023) used machine learning methods to probe the relationship between the large-143

scale flow and gravity waves, for non-orographic waves in the mid-latitudes and using144

waves resolved in a reanalysis as a target. In contrast, the present study aims at observed145

momentum fluxes in the Tropics, where the Strateole 2 campaigns provide a wealth of146

new observations (Haase et al., 2018; Corcos et al., 2021).147

The paper is organized as follows: Section 2.1 provides an overview of the data and148

ML algorithms used in this study. Section 3 presents the performances of ML methods149

in reconstructing the reference GMWFs. Section 4 discusses the factors that influence150

the performances and addresses the limitations of ML methods. Finally, Section 5 con-151

cludes the study with key takeaways and future directions.152

2 Data and methodology153

2.1 Data154

We use in situ observations collected from eight constant-level balloon flights (al-155

titude between 18.5 and 20km) during the Strateole-2 mission from November 2019 to156

February 2020 (Corcos et al., 2021). As in Corcos et al. (2021), momentum fluxes (MFs)157

were computed from raw balloon measurements following the procedure described in Vin-158

cent and Hertzog (2014). Essentially, the pressure and horizontal wind time series are159

first projected in the time-frequency domain thanks to a continuous wavelet transform160

(Torrence and Compo, 1998). The pressure observations inform on the vertical displace-161

ments of the balloon, which are related to those of air parcels, assuming that the bal-162

loon behaves as a perfect isopycnic tracer. The time-frequency MF decomposition is then163

derived from the wavelet cross-spectrum of the horizontal winds and air-parcel vertical164

displacements. Segments polluted by non-geophysical artifacts (e.g. depressurization events)165

are discarded.166

For our analysis, and following Corcos et al. (2021), we considered gravity wave167

MFs integrated over two frequency bands: a high-frequency (HF) band (i.e. short pe-168
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riods, ranging from 15 minutes to 1 hour) and wide-frequency (WF) band (i.e., long pe-169

riods, ranging from 15 minutes to 1 day). For the sake of readability, in all that follows170

we focus on the HF band, unless explicitly stated. Additionally, we also differentiate be-171

tween eastward-propagating waves that yield positive MF in the zonal direction (east-172

ward) and westward-propagating waves that produce negative MF (westward). We use173

these MFs as a reference for the true target MFs. Then, we pair them with large-scale174

flow input information from ERA5, such as wind velocity (u and v), temperature (temp),175

total precipitation (tp) and logarithm of surface pressure (lnsp). These fields are retrieved176

for each balloon, from fields at a resolution of 1◦× 1◦, at the grid point closest to the177

balloon position. Additionally, the same input variables have been retrieved in the vicin-178

ity of a 5 by 5 horizontal square centered on the grid point closest to the balloon; in the179

present study, only total precipitation in this extended area around the balloon will be180

used. In the vertical, the ECMWF model comprises a total of 137 levels. Four levels are181

retained in the present study, to succinctly describe the vertical wind profile from the182

surface to balloon flight level (see Table 1).183

The inputs and the targets are interpolated and averaged into 1-hour time resolution.184

The three ML models are trained using 3-hour time averaging data, and their perfor-185

mance will be evaluated based on daily averaging time resolution, as presented in Lott186

et al. (2023). Table 1 presents the finalized large-scale flow variables utilized for train-187

ing ML models.188

2.2 Methodology189

In this study, three tree-based ensemble ML methods are considered: random for-190

est (RF) introduced in Breiman (2001), extremely randomized trees also known as extra-191

trees (ET) by Geurts et al. (2006), and Adaptive Boosting or Adaboost regressors by192

Freund & Schapire (1997). These algorithms construct multiple decision trees, and the193

final prediction is determined by aggregating the individual decision tree predictions.194

It should be noted that other methods, such as deep neural networks, as well as195

other types of networks including convolutional and recurrent neural networks, have also196

been implemented. However, the performances of these methods are not comparable to197

the presented tree-based algorithms, as these models typically require a large number198

of observations to achieve comparable results. The limitations and concerns regarding199

the models, the large-scale input variables, the target observations, and the nature of the200

relation between the large-scale and small-scale flow will be discussed later in Section 4.3.201

2.2.1 Decision tree202

The decision tree algorithm (Breiman et al., 1984) is the foundational building block
of the primary ML methods used for our predictions. They are widely used for nonlin-
ear prediction problems due to their efficiency and interpretability. To construct a de-
cision tree, the training data is recursively partitioned into small hyperrectangular re-
gions of the forms R1 = {X ≤ α} and R2 = {X > α} for some ERA5 input variable
X (wind velocity or precipitation, for instance) and threshold α. At each step, we re-
cursively split the input space into hyperrectangular regions that are as pure as possi-
ble. Purity refers to the homogeneity of the training target y (GWMF) within each re-
gion, and Total Within Sum of Squares (TWSS) is utilized as the impurity measure in
this study. Specifically, a split is performed at any input variable X at threshold α if it
minimizes the following TWSS criterion:∑

y of R1

(y − µ1)
2 +

∑
y of R2

(y − µ2)
2,

where203

• R1 and R2 are the left and right regions of the split204
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• µ1 and µ2 are the average targets within region R1 and R2 respectively.205

Any new observation must belong to one of these regions, and its prediction is determined206

by averaging the target values of all the neighboring observations within that block. Con-207

structing an optimal tree is generally challenging, and the tree’s structure, such as its208

depth and the minimum size of regions allowed to split, are hyperparameters that need209

to be optimized. Figure 1 below provides an example of a simple decision tree trained210

on 100 observations of precipitation and zonal wind velocity to predict absolute GWMF.211

Figure 1. An example of a simple decision tree built using precipitation and wind velocity to

predict absolute GWMF. The left side is the partition cell representation of the tree on the right

side. The data points are colored according to the value of their target GWMF.

212

2.2.2 Random forest213

Random forest (RF) is a powerful ensemble learning method that aims at minimiz-214

ing variance across a collection of decision trees by averaging their predictions (Breiman,215

2001). The term ‘random’ signifies the deliberate characteristic of constructing individ-216

ual trees using different bootstrap samples (sampling observations with replacement) and217

exploring only a small, randomly selected, subset of the complete input features. This218

approach effectively decorrelates the individual trees, resulting in a reduction of predic-219

tion variance. Additionally, the construction of each individual tree using only a small220

subset of input features enables random forest to handle high-dimensional data effectively.221

The key hyperparameters in a random forest are the number of trees, tree complexity,222

and the number of randomly selected features used in building the individual trees. Fine-223

tuning these hyperparameters is essential to optimize the performance of the method.224

2.2.3 Extremely randomized trees225

Extremely randomized trees or Extra-trees (ET) operates similarly to RF approach,226

with the distinction that each tree is constructed using the complete training data, and227

each split is performed at random values using a random subset of input features (Geurts228

et al., 2006). This results in a high degree of independence among the trees and can oc-229

casionally yield remarkable results compared to the random forest method.230

2.2.4 Adaptive boosting231

Adaptive boosting (Adaboost) combines weak learners to create a strong predic-232

tive model (Freund & Schapire, 1997). Weak learners refer to predictive models that per-233
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form slightly better than random guesses, and simple decision trees with only a few splits234

(stumps) are used as weak learners in this study. During each iteration, Adaboost com-235

bines an individual stump by using a weighted sum, where the weight assigned to the236

current stump is determined based on its overall performance in predicting the target237

variable. Additionally, the weights associated with the individual training data points238

are adjusted manually based on their prediction accuracy, giving more attention or weight239

to points with poor predictions in the next iteration. Adaboost is well known for its abil-240

ity to mitigate overfitting (Rätsch et al., 2001) and has achieved significant success in241

various prediction challenges (see, for example, Benjamin Bossan (2015) and ZEWEICHU242

(2019)).243

2.2.5 K-fold cross validation244

K-fold cross-validation is the most commonly used model selection technique in ma-245

chine learning. It involves dividing the training data into K parts or folds, namely F1, . . . , FK ,246

then a model is trained on K−1 folds, and it is tested on the remaining one. This pro-247

cess is repeated K times and the final performance is the average performance over all248

the K different testing folds. In this study, K-fold cross-validation is used to prevent over-249

fitting and to select the best possible hyperparameters of each ensemble method. More250

precisely, if fθ is the considered method (random forest, for example) with a hyperpa-251

rameter θ ∈ Θ, then the optimal hyperparameter θ∗ is defined by,252

θ∗ = argmin
θ∈Θ

1

K

K∑
k=1

∑
(xi,yi)∈Fk

(fθ(xi)− yi)
2. (1)

In our study, θ consists of the depth of the decision trees (maximum number of splits253

performed from the root node to the leaves), the size of random subsets of the ERA5 in-254

put features to be considered when building individual trees, and the number of deci-255

sion trees used in each ensemble learning method. All these keys are tuned using 10-fold256

cross-validation.257

2.3 Training258

We first train ML models with an extensive set of ERA5 inputs. Subsequently, we
refine these inputs to a more manageable subset (see Table 1 below) using importance
feature scores, which will be described in Section 3. Moreover, in order to reduce the in-
fluence of extreme values in the target and increase its normality, the Box-Cox trans-
formation (Box & Cox, 1964) is performed on the GWMF y to obtain the transformed
target ỹ:

ỹ =
yλ − 1

λ
.

In the experiment, the exponent λ = 0.6 is chosen based on the performance of mod-
els trained on the corresponding transformed target data. The predictions given by ML
models are then reverted using the inverse transformation:

y = (1 + λỹ)1/λ.

Moreover, to predict any GWMFs (absolute, eastward, or westward GWMFs of HF259

or WF case) of any given balloon, the ML models are trained using data from the seven260

other balloons. The models are fine-tuned using a 10-fold cross-validation method to op-261

timize their performances.262

Finally, the resolutions used for the data (see Section 2.1) reflect the phenomena263

we aim to estimate. From large-scale information as described from reanalyses at a res-264

olution of 1◦ × 1◦ and hourly in time, it is only reasonable to estimate GWMFs aver-265

aged over a comparable timescale (one hour). As the balloons drift at velocities typically266
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ten to twenty m.s−1, this corresponds to sampling over a spatial area of several tens of267

kilometers. The final choice for the specific setting used has been also guided by the mo-268

tivation to make comparison with the results of Lott et al. (2023) possible.269

The targeted gravity waves, as observed by the balloons, cover the whole range of270

intrinsic frequencies. The high frequency band (HF, see Section 2.1) may a priori be more271

difficult to predict from ML because it is expected to be more intermittent (Corcos et272

al., 2021), so that sampling will be a more severe issue than for the WF band. On the273

other hand, higher frequency waves propagate more vertically and are shorter-lived, both274

factors contributing to a stronger causal relationship between local conditions below the275

balloons and observed gravity at balloon level. As it has turned out that this second fac-276

tor is more important, we focus hereafter on HF waves as the target, while the WF cases277

are detailed in the supplementary document.278

Name Notation Description

Zonal, meridional wind
velocity (m.s−1) & temper-
ature (K)

uj , vj &
tempj

with vertical level j ∈ {0, 2, 9, 19} (km),
where 0 is the surface and 19 is the bal-
loon’s level.

Total precipitation (m) tp at center of horizontal grid points.

Mean & standard devia-
tion of precipitation (m)

tpmean &
tpsd

over horizontal grid points.

Solar zenith angle (°) sza1 at the location of the balloon.

Log surface pressure
(log(hPa))

lnsp at the surface level.

Table 1. Large-scale input data for training ML models.

2.4 Evaluation metric279

An important aspect in any comparison of models to observations is the choice of280

a metric to evaluate the performance of the models. We explain here why, in line with281

Lott et al. (2023), we use correlation between modelled and observed values as our met-282

ric. The current study is in line with studies that have compared parameterized and ob-283

served gravity waves (eg Geller et al. (2013)). In such comparisons, the first aim is nat-284

urally to compare mean momentum fluxes, yet over the past decade the importance of285

having a realistic variability has been emphasized (Alexander et al., 2010)). This has high-286

lighted the notion of intermittency (Hertzog et al., 2012) and quantification of the dis-287

tribution of momentum fluxes when comparing parameterizations to observations (de la288

Camara et al., 2014; Bushell et al., 2015). These comparisons, however, concern the over-289

all statistics, not a direct comparison of observed and parameterized variations on a case-290

to-case basis. Obtaining an appropriate observational dataset and gathering the corre-291

sponding large-scale variables for such a case-to-case comparison has required significant292

work and has been achieved for the comparison of Lott et al. (2023). These datasets pro-293

vide a unique opportunity to investigate the co-variability of observed GWMF and es-294

timations from the large-scale flow, whether based on parameterizations (Lott et al., 2023)295

1 Solar zenith angle is the only input obtained from the balloons, not from the ERA5. It is a periodic

function that provides an estimation of time of the day and the balloon’s location.
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or on machine learning techniques presented in this study. This is why we here focus on296

this co-variability, quantified by the correlation. It is expected that the averaging effect297

of tree-based algorithms may lead to underestimation of the target, especially when deal-298

ing with rare extreme values such as GWMFs. Obtaining appropriate intermittency of299

the reconstructed gravity wave momentum fluxes will require further efforts, and direc-300

tions for these efforts are discussed in the perspectives (Section 5).301

3 Results302

This section reports the correlations of ML methods in reconstructing various types303

of observed GWMFs. The numerical study is carried out using sklearn.ensemble mod-304

ule in Python (Pedregosa et al., 2011). In general, the three ML models exhibit very com-305

parable performances on any given balloon. In contrast, the performance of the ML mod-306

els varies significantly from one balloon to another. At their best, ML models can achieve307

an encouraging level of correlation larger than 0.7. The average performance over all bal-308

loons and data exceeds 0.5. The worst performances is found for westward GWMF for309

a specific balloon, with correlation down to 0.2. Overall, the performances of ML mod-310

els are sensitive to the choice of balloons and the types of GWs being considered (east-311

ward, westward or absolute GWMFs). The numerical results for HF waves are presented312

in the following subsections, while the WF cases are presented in supplementary doc-313

ument.314

3.1 Overall performances315

Three examples of observed and predicted GWMFs of the HF case are presented316

in Figure 2 below. Each subplot displays the eastward component of the GWMFs in the317

positive part and the westward ones in the negative part. It can be observed that the318

models effectively capture the fluctuations of the observed momentum fluxes, particu-319

larly on balloon 2. However, the models struggle to fully estimate the amplitudes of high-320

peak events, especially for balloons 3 and 7. Overall, the performances of all ML mod-321

els are quite similar; however, there are cases where one outperforms the others. For ex-322

ample, Adaboost appears to do a slightly better job on balloon 2 than the other two mod-323

els in capturing the amplitudes of the high-peak events. It is worth noting that balloon324

2 presents overall the best performance for the ML models, balloon 7 illustrates a typ-325

ical average case, and balloon 3 is the most challenging one to predict: this is suggested326

visually in Figure 2, and is confirmed quantitatively in Table 2.327

A feature of the reconstructed GWMF is that the peak values are generally under-328

estimated, as can be seen even for balloon 2 in Figure 2. This is partly expected given329

that tree-based models involve averaging from numerous decision trees, some of which330

are insufficiently informed to capture extreme occurrences of GWMFs. To document the331

relationship between the reconstructed and observed GWMFs, scatterplots are displayed332

in Figure 3. These illustrate how the reconstruction captures well the variations of GWMFs,333

especially for rather weak variations. In contrast, for occurrences of larger MFs, the ob-334

served values cover a range of values that are not captured by the ML approaches. The335

scatterplots illustrate that those occurrences are rare, and the training data certainly con-336

stitutes a limiting factor. It is not clear that it may be possible to capture, in a deter-337

ministic way, these extremes. It is worth noting that the ML approaches do generally338

capture when the GWMF is at the high end of the range of reconstructed values.339

Figure 4 presents boxplots of Pearson’s correlation coefficients between predicted340

and true GWMFs of the HF case. Firstly, choosing the best model is challenging due341

to the variability in the boxplot positions, which depends on the choices of balloons and342

GWMF types. For instance, on balloon 2, the correlation boxplot of Adaboost is higher343

than the other two methods for the absolute and westward cases but lower than Ran-344

dom Forest for the eastward case. However, these differences are generally insignificant345
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Figure 2. Observed and predicted time series of high-frequency east and westward GWMFs

of the best, worst and medium cases: balloon 2, 3 and 7, respectively. The x-axis label ”Day”

indicates the number of days since the individual balloon was launched, with 0 corresponding to

the moment of launch.

Figure 3. Scatterplots of predictions against observed (true) GWMF corresponding to the

time series of Figure 2. Only the predictions of Adaboost are presented for balloon 2, 3 and 7

(from left to right). The lower groups represent the westward fluxes, while the upper groups de-

note the eastward ones. The red line serves as the reference 1:1 line.

compared to the variations observed between different balloons. Secondly, ML models346

demonstrate strong performance on balloons 2, 6, and 8 across all types of momentum347

fluxes, and they also excel in predicting the eastward momentum flux of balloon 1. Nev-348

ertheless, balloons 3, 4, 5, and 7 pose greater challenges, with the most difficult being349

the westward component of GWMF on balloon 3. Finally, the ML models generally out-350

perform the gravity wave drag scheme of the IPSL model (Lott et al., 2023), except for351

balloon 3 (east and westward) and balloon 4. Moreover, Table 2 provides the statisti-352

cal significance of the correlations presented in Figure 4.353
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Figure 4. The boxplots display the correlations between predicted and observed high-

frequency GWMFs obtained from 50 runs of ML methods as shown in Table 2. For each balloon,

moving from left to right, the three boxplots correspond to the Random Forest, Extra Trees, and

AdaBoost methods, respectively. The dashed horizontal red lines indicate the performance of the

parameterization of the IPSL model (Lott et al., 2023).

3.2 Which large-scale inputs are informative for ML models?354

The tree-based ensemble ML models employed in this study are not only proficient355

in predicting GWMFs but also offer valuable insights into the importance of large-scale356

input information during their training process. Each method exploits the feature im-357

portance (decrement of impurity measure at each split) of its individual decision trees358

for determining the overall feature importance, resulting in a ranking of input features359

from most to least important. Figure 5 showcases the ranking of the top 5 input features360

for all ML methods and GWMF types of the HF case.361

Generally, the high-ranking inputs consist of variables that describe precipitation362

and wind velocity at and below the balloon’s level. It is important to note that differ-363

ent models may not rank input features in the same way for a given target (as seen along364

the rows), due to the variations in the way individual trees are grown. However, the three365

models concur on the strongly impactful input features; for example, wind velocity at366

the balloon’s level (u19) ranked first in the eastward case (second row) for all models.367

This suggests that the wind velocity surrounding the balloons is the most informative368

large-scale variable for predicting eastward gravity wave momentum fluxes (GWMFs).369

Furthermore, the few most significant inputs show a similar preference in both absolute370

and eastward GWMFs within the same model, as demonstrated in the columns of the371

first and second rows. For instance, standard deviation and average total precipitation372

–12–



manuscript submitted to JGR: Atmospheres

Figure 5. The boxplots show the 5 most important features given by different ML models

(by column) on different types of targets (by row). Each boxplot is obtained from the same 50

simulations as displayed in Figure 4.

(tp sd and tp mean) are identified as impactful inputs in random forests, while surface373

zonal wind velocity (u0) is deemed the most important one in extra trees.374

4 Discussion375

While the results of the machine-learning models are generally encouraging, defi-376

ciencies and cases with poor performances were also found. The main motivation for this377

study being to probe the relationship between the large-scale and the unresolved pro-378

cess, these somewhat negative results are also of interest and can provide useful insights.379

Possible explanations for the main difficulties encountered are discussed below.380

4.1 Why are westward GWMFs more challenging?381

Figure 4 displays the performances of the ML models and those of the parameter-382

ization used in the IPSL climate model. Balloon 4 constitutes an exception, for which383

the parameterization systematically performs better than the ML methods. Leaving bal-384

loon 4 aside, ML approaches unambiguously outperform the parameterization for the ab-385

solute momentum fluxes. For the eastward momentum fluxes, ML approaches generally386

perform better or are similar to the parameterization. In contrast, both ML approaches387

and the parameterization have poorer performances for westward MF, and with greater388

variability for both: for five balloons, ML outperforms clearly the parameterization, whereas389

for two balloons (including balloon 4) the parameterization clearly outperforms the ML.390

The present section discusses possible reasons for this difficulty in reproducing the west-391

ward momentum fluxes.392

–13–



manuscript submitted to JGR: Atmospheres

Figure 6 displays the Probability Density Function of winds for three balloons as393

blue curves: balloon 2 has flown in winds that include a majority of westward, strong394

winds. Like balloon 1, it traveled near 10◦S in easterly flow for a significant portion of395

its flight. In contrast, balloons 3 and 7 have flown in weaker winds, with a mild dom-396

inance of westerly winds. Also plotted in Figure 6 are conditional PDFs of the zonal winds,397

conditioned on the intensity of the absolute GWMF. The purpose is to detect if strong398

values of GWMF were associated to specific wind conditions. For balloon 2, strong GWMF399

values were found mostly for moderate to strong easterly winds, and this distribution400

is insensitive to the quantile chosen for the GWMF (90th, 95th or 99th percentile). For401

balloon 7, the distribution is somewhat sensitive to the quantile chosen. Finally, for bal-402

loon 3, the conditional distribution of zonal wind dramatically changes when it is restricted403

to the 99th percentile. This detects a particularly intermittent time series, with variabil-404

ity dominated by one extreme event, as seen from Figure 2. These findings contribute405

to explaining the poor performances for balloon 3: the variability of GWMF was dom-406

inated there by one (or very few) extreme events, occurring in a specific condition with407

very weak winds (close to zero, less than 5 m.s−1). In contrast, the good performances408

for balloon 2 occur in a case with less intermittency, for which large GWMF are found409

in strong (easterly) winds.410

Figure 6. Conditional densities of zonal wind given different values of high-frequency west-

ward GWMFs. Here, q(0.9), q(0.95) and q(0.99) are the 90%, 95% and 99% quantiles of the

absolute value of high-frequency westward GWMFs, respectively.

From Table 2, Figure 4 and the trajectories of the balloons (Corcos et al., 2021),411

it appears that drifting with easterly winds may constitute a favorable factor (balloon412

2), but neither a sufficient one (the correlation for westward momentum fluxes for bal-413

loon 1, which has a similar trajectory, is moderate, 0.43 at most) nor a necessary one:414

balloons 6 and 8 generally drift eastward, but good performances are found for the ML415

reconstruction of the westward MF (0.66 and 0.72 respectively).416
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Another aspect that influences the performances is the geographical location, and417

more specifically the latitude of the balloons. Figure 7 displays the PDF of latitude for418

the eight balloons, distinguishing those for which the ML reconstruction of westward MF419

is satisfactory (balloons 1, 2, 6 and 8, full lines) from those for which it remains chal-420

lenging (balloons 3, 4, 5 and 7). Here again, one does not isolate a necessary condition,421

but the balloons for which reconstruction remain challenging are those that remain clos-422

est to the equator. This is consistent with the general expectation that dynamics is more423

complicated near the Equator, although it is not completely clear why this should mat-424

ter for a small-scale process such as convectively generated gravity waves. It may be that425

it is not the dynamics itself that is intrinsically more difficult to capture at the Equa-426

tor: it may be the input variables that are poorer, less accurate, very close to the Equa-427

tor. It is known indeed that significant errors, in particular in the wind, are present in428

the reanalyses very near the Equator (Podglajen et al., 2014; Baker et al., 2014; Ern et429

al., 2023) and the errors are enhanced within a few degrees of the Equator (roughly be-430

tween 8◦S and 8◦N).431

4.2 Why are some balloons easier to predict than others?432

Figure 7 indicates that the predictability of the observed GWMFs is influenced by433

the balloons’ position, specifically, their distances from the equator. Balloons that trav-434

eled farther from the equator, primarily south (except for balloon 6, which also explored435

farther to the north), were found to be easier to predict. This tendency is observed for436

balloons 1, 2, 6, and 8 which are the well-predicted balloons. In contrast, the challeng-437

ing balloons spent most of their time flying within a few degrees of the equator, where438

the atmospheric conditions are not well described by ERA5 data.

Figure 7. The trajectories of the balloons during the whole flight (a), and their latitude PDFs

(b) and (c). Dashed lines correspond to balloons that pose challenges in prediction.

439

4.3 Exploring potential reasons for unsatisfactory cases440

Several factors are expected to limit the ability to estimate the observed GWMFs441

from inputs describing the large-scale flow:442
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A. Part of the relationship between the large-scale flow and a subgrid-scale process443

such as gravity waves is non-deterministic, or stochastic: for given values of the444

large-scale fields, a range of different realizations of the subgrid-scale process is445

possible. It depends on the process: orographic gravity waves are likely more pre-446

dictable than convective processes for instance.447

B1. The estimate of GWMFs from superpressure balloons is very local and samples448

only along its trajectory. This is only partly mitigated by the hourly averaging.449

The GWMFs time series certainly remain sensitive to the specific location of the450

balloon. At present, it is difficult to estimate this sensitivity. Investigations with451

virtual balloons in high-resolution simulations shall be informative on this issue.452

B2. A second concern regarding the target used for the ML is the observational error453

present in the estimates of the GWMFs from balloon measurements. These es-454

timates are regarded as accurate because several variables are measured simulta-455

neously and because of the quasi-Lagrangian nature of the measurements (Geller456

et al., 2013; Vincent & Hertzog, 2014). There remains nonetheless observational457

error.458

C1. Concerns are also present for the input variables, and in particular it is known that459

the description of the equatorial dynamics is challenging, with significant errors460

remaining present in the reanalysis especially for wind (Podglajen et al., 2014).461

C2. Another concern regarding input variables is that we may have omitted variables462

that could have been informative.463

In our study, we mitigated the concern of omitting informative variables (C2.) by464

initially training ML models on a large set of ERA5 inputs, then selectively reducing them465

to a reasonably small subset, as described in Section 2.1. This approach ensures that es-466

sential ERA5 inputs are not inadvertently omitted. Furthermore, fine-tuning the hyper-467

parameters of the models enhances their predictive capacity. Regarding the concern of468

large-scale variables (C1.), a sensitivity test to the error of ERA5’s wind is described at469

the end of Section 5 (key messages).470

In addition, we observe that all the balloons often flew over many convective pro-471

cesses, and the high-peak events often correspond to deep convective systems, as illus-472

trated for selected cases in Figure 8 below. On January 12th, 2020, balloon 2 was fly-473

ing in an area of convection (upper panels (a1) and (a2)), which is likely responsible for474

the highest peaks in its GWMF time series. Interestingly, for balloon 2, almost all events475

correspond very well with precipitation as described by ERA5 (first column of Figure 9).476

On the contrary, there is only one big event that happened for balloon 3 around Jan-477

uary 29th, 2020 (lower left panel (b)). However, the ML models failed to capture it, as478

it appears to be absent from the ERA5 input variables (not reflected in precipitation nor479

winds as shown in the second column of Figure 9). This is also true for other challeng-480

ing balloons, such as the 4th and 5th. Regarding balloon 7, the large-scale flow provide481

partial information for the high-peak events, resulting in partial success in the model’s482

predictions.483

5 Conclusion and perspectives484

5.1 Key messages485

The relationship between the large-scale atmospheric flow and gravity waves in the486

lower stratosphere has been investigated using Machine Learning (ML) approaches. This487

relationship is accounted for in global models through parameterizations. ML approaches488

allow us to revisit these in several ways, notably investigating how much of the subgrid-489

scale signal may be estimated deterministically, and which are the key variables for that490

purpose.491
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Figure 8. Brightness temperature from NOAA/NCEP GPM MERGIR product (Janowiak,

2017), positions, and the corresponding observed GWMFs at the high-peak events of balloon 2

(top), balloon 3 (lower left) and balloon 7 (lower right).

Figure 9. Time series of absolute GWMFs and the most informative ERA5 inputs in daily

time resolution. The clear correspondence between precipitation and GWMF of balloon 2 can be

visually observed in column (a). In contrast, this is not the case at all for balloon 3 as shown in

column (b), and it partially presents in column (c) of balloon 7.

Estimates from superpressure balloon measurements were chosen as the target ob-492

servations for gravity wave momentum fluxes (GWMF). The first campaign of the Stra-493
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teole 2 project (Haase et al., 2018) consisted of eight balloons flying an average of about494

85 days each around the globe in the equatorial band. The quasi-Lagrangian nature of495

the balloons allows an accurate estimate of gravity wave momentum fluxes (Geller et al.,496

2013), the latter being a key quantity for parameterizations (Alexander et al., 2010). Anal-497

ysis of the GWMF estimated from measurements in this first campaign has highlighted498

and confirmed convection as the main source of gravity waves in this region, especially499

for waves with high frequencies (periods shorter than one hour); see Corcos et al. (2021).500

The description of the large-scale flow environment was provided from the ERA5501

reanalysis, along with vertical profiles co-located with each balloon at each time. These502

variables included wind, pressure, temperature, and precipitation. The latter being a noisy503

and uncertain field, values of total precipitation were retrieved in a 500× 500 km2 area504

around each balloon location, and was generally described by the mean and standard505

deviation over this area.506

The ML models used are tree-based methods: random forests, extremely random-507

ized trees, and adaptive boosting. Other methods were also investigated, as sensitivity508

experiments, without yielding major improvements. For each method, seven out of eight509

balloons were used for training, and the last balloon was used for testing.510

The main results obtained from these investigations are as follows:511

1. Based on the information provided by the large-scale flow data from ERA5, ML512

methods can reconstruct the observed GWMFs with correlations exceeding 0.7 in513

certain cases (balloon 2, 6, and 8), which is encouraging. Overall, the majority of514

the correlations are statistically significant at least at the 95% level, except for a515

few cases, as indicated in Table 2. The performances of ML methods, however,516

vary considerably from one balloon to another, with correlations down to 0.4 for517

some other balloons, and even down to 0.2 in one case. The overall average cor-518

relation for the HF case is 0.54, while a slightly lower average correlation of 0.49519

is obtained in the WF case. In general, the correlations for WF waves are slightly520

weaker than those for HF waves (refer to the supplementary document for details).521

2. The variations in performance are much larger between different balloons, than522

they are for a given balloon between ML approaches. This suggests that the per-523

formances are limited by the datasets, not by the choice of ML approach. The tree-524

based methods proved generally efficient, but there is not an overwhelming pref-525

erence for one of them. Adaptive boosting frequently performed a bit better, but526

all three failed to capture the intensity of the (very intermittent) peaks in GWMF.527

3. The most informative explanatory variables are those describing the precipitation528

and the zonal wind at and below the balloon’s level. It is indeed an advantage of529

tree-based methods to provide information about the usefulness of the different530

inputs, e.g. through the Gini importance (Hastie et al., 2001). The importance531

of precipitation is consistent with the convective generation of the waves (Lott &532

Guez, 2013; Corcos et al., 2021). The importance of winds is consistent with the533

general understanding of the generation and propagation of waves (Kim et al., 2003);534

the relevance of wind at the balloon level is reminiscent of previous findings (Plougonven535

et al., 2017; Amiramjadi et al., 2023).536

4. The ML methods were more efficient at reconstructing the part of GWMF asso-537

ciated with high-frequency waves (periods shorter than an hour) than the whole538

spectrum. This is consistent with the local character of the explanatory variables539

provided as inputs: high-frequency waves will be shorter-lived and propagate more540

vertically.541

5. Different decompositions of the GWMF were used: absolute, eastward and west-542

ward GWMF. Interestingly, the performances significantly differed between these.543

The most difficult to reconstruct was found to be westward GWMF. Reasons for544

this likely include limitations of the dataset, to be further discussed below.545
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However, there are still parts where the large-scale flow are not informative enough546

in the estimation. There are cases where high peaks are present in the observed target,547

which indicates interesting events; however, large-scale flow are missed to describe them.548

As a result, the models failed to reconstruct such events in GWMFs (balloon 1 and 3,549

for example).550

In addition, we have also implemented ML models by replacing ERA5’s winds with551

balloon-observed winds at the balloon’s level. This tests the sensitivity to errors in the552

input variables, for the variables for which we have direct observations, and which is known553

in the reanalysis to include significant error. The results suggest there is some sensitiv-554

ity, but it is not extensive. Overall, the performances on some challenging balloons such555

as balloon 3 and 5 are significantly improved when using observed winds instead of ERA5’s556

winds. In contrast, the performance on balloon 8 drops quite a bit compared to the model557

with ERA5’s winds. Overall, the models utilizing observed wind achieve an average cor-558

relation of 0.53 in the HF case and 0.47 in the WF case. These results can be found in559

the supplementary document.560

5.2 Perspectives561

Although the ML approaches have performed well, and nearly always better than562

the parameterization, there are clear limitations to the current investigation, calling for563

further research. The very strong sensitivity of the performances to the balloon that is564

left out and then used for testing is a clear indication that we lack data: the results strongly565

depend on the split of the data for training and testing, the performances are far from566

convergence. This is consistent with the strong intermittency of the GWMF (Hertzog567

et al., 2012; Plougonven et al., 2013) and with the illustrative time series of Figure 2:568

for each balloon, GWMF are dominated by a few events, such that even with 680 days569

of balloon measurements, only a few handfuls of GWMF peaks are described. This is570

too little for data-driven methods. This also explains why clear distinctions between the571

different methods are not found: the ML methods do their best but still lack data to clearly572

separate a better method for this problem, if there is one.573

Ways forward include:574

• Obtaining more observations to use as the target, keeping the same framework for575

the ML. Additional observations would come from the second Strateole 2 campaign576

(in 2021) and from Loon balloons (Schoeberl et al., 2017; Köhler et al., 2023). The577

additional Strateole data would enhance the data by less than a factor 2 and is578

therefore not expected to suffice to make a dramatic change. The Loon data would579

come with other difficulties as the observations were not made for research pur-580

poses and come with their own challenges (Green et al., 2023).581

• Additional data could be provided not for the targets, but for the explanatory vari-582

ables. A first step could be including additional input variables from the reanal-583

yses. However, preliminary attempts have not suggested significant gains from the584

most evident additional culprits. A second step would consist of providing much585

more detailed and more accurate information about the background flow: this could586

be obtained from satellite observations, such as the observations of brightness tem-587

peratures from geostationary satellites shown in Figure 8. This would constitute588

a very interesting new study but in a profoundly new framework and with differ-589

ent aims: to fully use the information available from satellites would a priori re-590

quire providing maps (or images, or 2D fields) as input variables (more akin to591

Matsuoka et al. (2020), although their inputs were from models, not observations).592

The ML used would need to be reassessed (Matsuoka et al. (2020) used neural net-593

works, for instance). Such a study would be of great interest because the perfor-594

mance of the ML methods would much less be tainted by the uncertainty (or er-595

rors) present in the inputs that serve to describe the background. Additionally,596
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much more detailed information would be provided about the background flow,597

allowing the ML methods to tap into a greater reservoir of potentially relevant in-598

formation, and hence providing more precise answers regarding the relationship599

of the large-scale flow to the gravity wave signal. However, if the outcome of such600

an exercise would be of interest fundamentally, it would be more removed from601

the framework in which current parameterizations operate.602

• A shortcoming of the present ML approaches is that they underestimate the peak603

values for GWMF (see Figures 2 and 3. This is expected, given the averaging in-604

volved in tree-based method and the limited number of strong events present in605

the training data. However, this implies that the distribution of reconstructed mo-606

mentum fluxes misses the tail of intense, rare events, which are known to matter607

for atmospheric gravity waves (Hertzog et al., 2012; de la Camara et al., 2016).608

One way to overcome this would be to aim not at a deterministic reconstruction609

of the momentum fluxes, but at reconstructing a probability density function of610

these. This change of framework, equivalent to changing from a deterministic to611

a stochastic parameterization, would in fact be more consistent for three reasons:612

first, given some large-scale conditions, there are certainly several different small-613

scale configurations with different resulting gravity waves that can occur. Second,614

for any given realization of the small-scale flow corresponding to large-scale con-615

ditions, our observed values depend on the specific sampling by the balloon. At616

present, we do not fully know how sensitive the observed gravity wave momen-617

tum fluxes are to this sampling. Finally, the estimate of gravity wave momentum618

fluxes from the observed balloon measurements involves assumptions and method-619

ological choices, and there is as always an observational error in the estimates for620

GWMF. Given that the ML methods do capture rather well the occurrence of larger621

values, using ML methods to reconstruct a PDF of likely fluxes, rather than a sin-622

gle, deterministic value, could give room to better represent the observed GWMF,623

although only in a probabilistic way.624

• A fourth way forward consists in applying similar investigations on datasets where625

more data is available, albeit at the cost of more uncertainty on the realism of the626

data. High-resolution models such as global convection permitting simulations (Stephan627

et al., 2019) provide a wealth of information on the resolved gravity wave field,628

and many studies have repeatedly highlighted the ability of models to simulate629

efficiently many features of the observed gravity wave field (Plougonven & Teit-630

elbaum, 2003; Wu & Eckermann, 2008; Preusse et al., 2014; Stephan et al., 2019).631

Model output from global simulations would provide amounts of data for which632

the sampling limitations of the Strateole balloons would not be present. The down-633

side is the limitations of model data, relative to observations, and the need for strate-634

gies to validate which aspects of the simulations are realistic.635
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and can be downloaded from its website: https://scikit-learn.org/stable/install650
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