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Motivation

m Modeling is a common tool used in many real-world prediction problems
especially in the domain of Energy.
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Motivation

m Modeling is a common tool used in many real-world prediction problems
especially in the domain of Energy.

m Building an accurate model with generalization capabilities is not an
easy task and may require information of unknown data structure mostly
hard to recover.

m With the aim to automatically combine efficiently clustering and
modeling, we propose the KFC procedure to effectively solve this
problem.

m Excellent performances of the KFC procedure were obtained on many
real datasets especially in the Energy domain for air compressor and
wind turbine.
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Outline

A. Introduction

B. KFC procedure

1. K-step: K-means algorithm with Bregman divergences
2. F-step: Fitting Candidate Models
3. C-step: Consensual Aggregation

C. Applications on the Energy domain

1. Air compressor
2. Wind turbine
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Consider an example...

Input data with 3 clusters Different model on each cluster

X1 | 1|4
X2 | Y2 | 22

Xn | Yn | Zn
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Introduction

Setting:
m (X,Z)e X x Z : input-out data.
m X =R . input space.
R . regression
mZ= . e
{0,1} : binary classification

m D, ={(x;,z)"_4} : iid learning data.
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Introduction

Setting:
B (X,Z)e X xZ : input-out data.
m X =R . input space.
R . regression
mZ= . I
{0,1} : binary classification

m D, ={(x;,z)"_4} : iid learning data.
Objective:
Construct a good predictive model for regression or classification.

Assumption:

m X is composed of more than one group or cluster.
m The number of clusters K is available.

m There exists different underlying models on these clusters.
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KFC procedure

KFC procedure consists of 3 important steps:

K: K-means algorithm with Bregman divergences
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KFC procedure

KFC procedure consists of 3 important steps:

K: K-means algorithm with Bregman divergences

F: Fitting candidate models

C: Consensual aggregation
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Bregman divergences (BD) [Bregman, 1967]

¢ :C C RY = R, strictly convex and of class C! then for any
(x,y) € C x int(C) (points of the input space X)),

dy(x,y) = o(x) = o(y) = (x =y, Vo(y))

1 o
g7
4 d¢( 1Y)
Py) + x =y, Voly))
e |
0 T :
-1 0 ¥y 1 2 x 3

Figure: Graphical interpretation of Bregman divergences.
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K-step: K-means Algorithm with Bregman Divergences

m Perform K-means algorithm with M options of Bregman divergences.
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K-step: K-means Algorithm with Bregman Divergences

m Perform K-means algorithm with M options of Bregman divergences.

m Each BD’ gives an associated partition cell S = {S{}K_..
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K-step: K-means Algorithm with Bregman Divergences

m Perform K-means algorithm with M options of Bregman divergences.
m Each BD’ gives an associated partition cell S = {S{}K_..
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Recall something...

Here, we need 3 local models to explain Z.
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F-step: Fitting Candidate Models

m Suppose that V/, k : Sf € S’ contains enough data points.
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m Suppose that V/, k : Sf € S’ contains enough data points.
m V/, k : construct an estimator mi on Sf.

m mt = {m{}K_| is the candidate estimator associated to DB’.

Digital French-German Summer School with Industry 2020



F-step: Fitting Candidate Models

m Suppose that V/, k : S,f € S’ contains enough data points.
m V/, k : construct an estimator mi on Sf.

m mt = {m{}K_| is the candidate estimator associated to DB’.
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C-step: Consensual Aggregation
Note that
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C-step: Consensual Aggregation
Note that

m neither the distribution nor the clustering structure of the input data is
available.

m it is not easy to choose the “best” one among {m‘} .
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C-step: Consensual Aggregation
Note that

m neither the distribution nor the clustering structure of the input data is
available.

m it is not easy to choose the “best” one among {m‘} .

Aggregation
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Classification

Example:

m Suppose we have 4 classifiers: m = (m', m>, m3, m*)

m An observation x with predictions: (1,1,0,1).

1D 1 2 3 m4

Tl W N
= =lol~|3
I—‘OI—‘OI—‘E
o|lr|lolo|o|3
e e e e
=IO O~ |N

Table: Table of predictions.
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Classification

Based on the following works:

[Mojirsheibani, 1999]: Classical method.

Comb{(x) =1
{ Z(x,—,y,-)eDn(2}/1'71)1{'“(’(:'):"1(’()}>0}

[Mojirsheibani, 2000]: A kernel-based method, for any h > 0:

CombS (x) =1 K(x) = e IXIP
{ J

2 (xjy1)eDn(2Yi—1)Kn (dH(m(Xi)vm(X))) >0
[Fischer and Mougeot, 2019]: MixCOBRA, for any «, 5 > 0:

Comb§ (x) = 1
{ Z(X,.,y,)epn(2y;71)K(%,W)>0}
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Regression
The aggregation takes the following form:

n
Aggn(x) =Y Wi i(x)zi
i=1
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Regression
The aggregation takes the following form:

n
Aggn(x) =Y Wi i(x)zi
i=1

[Biau et al., 2016]: with weight 0 — 1 (COBRA).

Wy i(x) = TTe21 T gime ) mé (1<)

n M
2 i1 ez Lyt o) me () <)
Kernel-based method of COBRA (kernel-based weight): for any h > 0,

K, (m(x,-) - m(x))

Wn’,'(X) =

571 Kn(m(x) = m(x))

for some kernel function K with Kp(x) = K(x/h).
[Fischer and Mougeot, 2019]: MixCOBRA.
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Applications on the Energy domain

Bregman divergences

m Euclidean: Forall x € C =RY, ¢(x) = [|x]3 = 29, x?,
ds(x,y) = IIx =y 3

m General Kullback-Leibler (GKL): ¢(x) = Zf’zl x;log(x;), C = (0, 4+0c0)¢,
dy(x,y) = Y1y | xilog <§> —(xi — yf)}

m Logistic: ¢(x) = Z:-j:l[x,- log(x;) + (1 — x;) log(1 — x;)], C = (0,1)9 ,
do(x,y) = Ty [satog () + (1 = x) log (1)

m ltakura-Saito: ¢(x) = — 27:1 log(x;), C = (0, +00)¢,
dy(x,y) = iy |5 — log (%) - 1}

m Polynomial: ¢(x) = 27:1 Ix;|P, C =R p>1,
dy(x,y) = L1 (1xilP = 1yilP) + p oy (—1) 00w o000 (x; — )y
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K-means with BD on some simulated datasets

M=4et K=3.

Exponential Data
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Figure: K-means with Bregman divergences on some simulated data.
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Air compressor data

m Provided by [Cadet et al., 2005].

m Six predictors: air temperature, input pressure, output pressure, flow and
water temperature.

m Response variable: power consumption.
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Air compressor data

m Provided by [Cadet et al., 2005].

m Six predictors: air temperature, input pressure, output pressure, flow and
water temperature.

m Response variable: power consumption.

m In real-world problems, K is usually not available and it is the case here!
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Performance

on air compressor

K[ Eucid GKL Logistic Ita | KFCy (G ) | KFC, (G
, | 15885 156.00 150.35 158.06 153.34 116.69
(6.42) (6.48) (6.71) (6.41) (6.72) (5.86)
5 | 15738 157.24 156.00 157.24 153.69 117.45
(6.95) (6.84) (6.65) (6.85) (6.64) (5.55)
4 | 154.33 153.06 153.09 154.07 152.09 117.16
(6.69) (6.74) (6.45) (7.01) (6.58) (5.99)
5 [153.18 153.10 152.05 152.25 151.05 117.55
(6.91) (6.77) (6.57) (6.70) (6.76) (5.90)
o | 15116 151.67 151.89 151.75 150.27 117.74
(6.91) (6.96) (6.62) (6.57) (6.82) (5.86)
S [151.08 150.09 152.81 151.85 150.46 117.58
(6.77) (6.84) (7.11) (6.61) (6.87) (6.15)
g | 15127 151.00 152.07 150.00 150.21 117.91
(7.17) (7.01) (6.65) (6.96) (7.03) (5.83)

Table: Performances of the KFC procedure.

Multiple LR | 22-NN | RF (500) | Boosting (500)
178.67 292.08 | 217.14 158.92
(5.18) (9.17) | (9.80) (4.33)

Table: Performances of alternative models.
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Performance on air compressor

K| Eucid GKL Logistic Ita | KFC; (Gaussian) | KFC, (Gaussian)
, | 15885 156.00 150.35 158.06 153.34 116.69
(6.42) (6.48) (6.71) (6.41) (6.72) (5.86)
5 | 15738 157.24 156.00 157.24 153.69 117.45
(6.95) (6.84) (6.65) (6.85) (6.64) (5.55)
4 | 154.33 153.06 153.99 154.07 152.09 117.16
(6.69) (6.74) (6.45) (7.01) (6.58) (5.99)
5 [153.18 153.10 152.05 152.25 151.05 117.55
(6.91) (6.77) (6.57) (6.70) (6.76) (5.90)
o | 15116 151.67 151.89 151.75 150.27 117.74
(6.91) (6.96) (6.62) (6.57) (6.82) (5.86)
S [151.08 150.09 152.81 151.85 150.46 117.58
(6.77) (6.84) (7.11) (6.61) (6.87) (6.15)
g | 15127 151.00 152.07 150.00 150.21 117.91
(7.17) (7.01) (6.65) (6.96) (7.03) (5.83)

Table: Performances of the KFC procedure.

Multiple LR | 22-NN | RF (500) | Boosting (500)
178.67 292.08 | 217.14 158.92
(5.18) (9.17) | (9.80) (4.33)

Table: Performances of alternative models.

x Even though K is not available, the KFC procedure still performs well on
this dataset.
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Wind turbine

m Provided by Maia Eolis (see [Fischer et al., 2017]).

m Six predictors: wind speed (real part, imaginary part, and strength),
wind direction (sine and cosine) and temperature.

m Response variable: power.
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Wind turbine

m Provided by Maia Eolis (see [Fischer et al., 2017]).

m Six predictors: wind speed (real part, imaginary part, and strength),
wind direction (sine and cosine) and temperature.

m Response variable: power.
m And again, we don't know K.
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Performance on wind turbine

K [ Eucid Poly | KFC; (Gaussian) | KFC, (Gaussian)
, | 6215 62.74 38.73 36.00
(3.01) (2.78) (2.05) (1.11)
5 | 6254 6421 38.88 37.18
(4.03) (7.01) (2.62) (3.09)
4 | 5973 6173 38.79 36.49
(4.15) (6.08) (2.81) (2.11)
o | 5452 56.74 38.68 36.62
(5.98) (2.31) (2.55) (2.02)
6 | 5325 57.10 39.05 36.83
(2.69) (7.71) (2.81) (2.37)
S [ 5134 5567 38.61 36.78
(4.00) (5.91) (2.60) (2.28)
g | 4976 55.04 38.76 36.55
(5.31) (7.21) (2.56) (2.22)

Table: Performances of the KFC procedure.

Multiple LR | 7-NN | RF (500) | Boosting (500)
69.46 40.30 37.26 41.65
(3.295) | (1.447) | (1.316) (1.424)

Table: Performances of alternative models.
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Performance on wind turbine
K | Euclid _Poly | KFC; (G KFC, (Gaussian)
P 62.15 62.74 38.73 36.09
(3.01) (2.78) (2.05) (1.11)
3 62.54 64.21 38.88 37.18
(4.03) (7.01) (2.62) (3.09)
4 59.73 61.73 38.79 36.49
(4.15) (6.08) (2.81) (2.11)
o[ 5452 56.7 35.68 36.62
(5.98) (2.31) (2.55) (2.02)
s [532 5710 39.05 36.83
(2.69) (7.71) (2.81) (2.37)
51.34 55.67 38.61 36.78
7| (4.00) (5.91) (2.60) (2.28)
49.76 55.94 38.76 36.55
81 (5.31) (7.21) (2.56) (2.22)

Table: Performances of the KFC procedure.

Multiple LR | 7-NN | RF (500) | Boosting (500)
69.46 40.30 37.26 41.65
(3.295) | (1.447) | (1.316) (1.424)

Table: Performances of alternative models.

* Similarly, the KFC procedure also performs well in this case, even without

the knowledge of K.
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Conclusion

m Several simulations carried out on different simulated and real data have
shown that the KFC procedure provides remarkable responses in many
prediction problems involving clustering and modeling.
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Conclusion

m Several simulations carried out on different simulated and real data have
shown that the KFC procedure provides remarkable responses in many
prediction problems involving clustering and modeling.

m In particular, we obtain its excellent performances on the domain of
Energy for air compressor and wind turbine.
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Thank youl!
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