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Motivation

Modeling is a common tool used in many real-world prediction problems
especially in the domain of Energy.

Building an accurate model with generalization capabilities is not an
easy task and may require information of unknown data structure mostly
hard to recover.

With the aim to automatically combine efficiently clustering and
modeling, we propose the KFC procedure to effectively solve this
problem.

Excellent performances of the KFC procedure were obtained on many
real datasets especially in the Energy domain for air compressor and
wind turbine.

2/24



Motivation

Modeling is a common tool used in many real-world prediction problems
especially in the domain of Energy.

Building an accurate model with generalization capabilities is not an
easy task and may require information of unknown data structure mostly
hard to recover.

With the aim to automatically combine efficiently clustering and
modeling, we propose the KFC procedure to effectively solve this
problem.

Excellent performances of the KFC procedure were obtained on many
real datasets especially in the Energy domain for air compressor and
wind turbine.

2/24



Motivation

Modeling is a common tool used in many real-world prediction problems
especially in the domain of Energy.

Building an accurate model with generalization capabilities is not an
easy task and may require information of unknown data structure mostly
hard to recover.

With the aim to automatically combine efficiently clustering and
modeling, we propose the KFC procedure to effectively solve this
problem.

Excellent performances of the KFC procedure were obtained on many
real datasets especially in the Energy domain for air compressor and
wind turbine.

2/24



Motivation

Modeling is a common tool used in many real-world prediction problems
especially in the domain of Energy.

Building an accurate model with generalization capabilities is not an
easy task and may require information of unknown data structure mostly
hard to recover.

With the aim to automatically combine efficiently clustering and
modeling, we propose the KFC procedure to effectively solve this
problem.

Excellent performances of the KFC procedure were obtained on many
real datasets especially in the Energy domain for air compressor and
wind turbine.

2/24



Outline

A. Introduction

B. KFC procedure

1. K-step: K-means algorithm with Bregman divergences
2. F-step: Fitting Candidate Models
3. C-step: Consensual Aggregation

C. Applications on the Energy domain

1. Air compressor
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Consider an example...

Input data with 3 clusters Different model on each cluster

x y z

x1 y1 z1

x2 y2 z2

. . . . . . . . .

xn yn zn
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Introduction

Setting:

(X ,Z ) ∈ X × Z : input-out data.

X = Rd : input space.

Z =

{
R : regression

{0, 1} : binary classification

Dn = {(xi , zi )ni=1} : iid learning data.

Objective:

Construct a good predictive model for regression or classification.

Assumption:

X is composed of more than one group or cluster.

The number of clusters K is available.

There exists different underlying models on these clusters.

5/24



Introduction

Setting:

(X ,Z ) ∈ X × Z : input-out data.

X = Rd : input space.

Z =

{
R : regression

{0, 1} : binary classification

Dn = {(xi , zi )ni=1} : iid learning data.

Objective:

Construct a good predictive model for regression or classification.

Assumption:

X is composed of more than one group or cluster.

The number of clusters K is available.

There exists different underlying models on these clusters.

5/24



Introduction

Setting:

(X ,Z ) ∈ X × Z : input-out data.

X = Rd : input space.

Z =

{
R : regression

{0, 1} : binary classification

Dn = {(xi , zi )ni=1} : iid learning data.

Objective:

Construct a good predictive model for regression or classification.

Assumption:

X is composed of more than one group or cluster.

The number of clusters K is available.

There exists different underlying models on these clusters.

5/24



KFC procedure

KFC procedure consists of 3 important steps:

K: K-means algorithm with Bregman divergences

F: Fitting candidate models

C: Consensual aggregation

....
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Bregman divergences (BD) [Bregman, 1967]
φ : C ⊂ Rd → R, strictly convex and of class C1 then for any
(x , y) ∈ C × int(C) (points of the input space X ),

dφ(x , y) = φ(x)− φ(y)− 〈x − y ,∇φ(y)〉

−1 0 1 2 3

0

2

4

6

8

y x

φ(y) + 〈x − y ,∇φ(y)〉

φ(x)

φ(y)

dφ(x , y)

Figure: Graphical interpretation of Bregman divergences.
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K-step: K-means Algorithm with Bregman Divergences

Perform K-means algorithm with M options of Bregman divergences.

Each BD` gives an associated partition cell S` = {S`k}Kk=1.

BD1

BD2

...

BDM

S1

S2

...

SM

K-step
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Recall something...

Here, we need 3 local models to explain Z .
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F-step: Fitting Candidate Models

Suppose that ∀`, k : S`k ∈ S` contains enough data points.

∀`, k : construct an estimator m`
k on S`k .

m` = {m`
k}Kk=1 is the candidate estimator associated to DB`.

BD1

BD2

...

BDM

S1

S2

...

SM

m1

m2

...

mM

K-step F-step
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C-step: Consensual Aggregation
Note that

neither the distribution nor the clustering structure of the input data is
available.

it is not easy to choose the “best” one among {m`}M`=1.

DB1

DB2

...

DBM

S1

S2

...

SM

m1

m2

...

mM

Aggregation

K-step F-step C-step
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Classification

Example:

Suppose we have 4 classifiers: m = (m1,m2,m3,m4)

An observation x with predictions: (1, 1, 0, 1).

ID m1 m2 m3 m4 z

1 1 1 0 1 1

2 0 0 0 1 0

3 1 1 0 1 0

4 1 0 1 1 1

5 1 1 0 1 1

Table: Table of predictions.
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Classification

Based on the following works:

1 [Mojirsheibani, 1999]: Classical method.

CombC1 (x) = 1{∑
(xi ,yi )∈Dn

(2yi−1)1{m(xi )=m(x)}>0

}
2 [Mojirsheibani, 2000]: A kernel-based method, for any h > 0:

CombC2 (x) = 1{∑
(xi ,yi )∈Dn

(2yi−1)Kh

(
dH(m(xi ),m(x))

)
>0

},K (x) = e−‖x‖
2

3 [Fischer and Mougeot, 2019]: MixCOBRA, for any α, β > 0:

CombC3 (x) = 1{∑
(xi ,yi )∈Dn

(2yi−1)K(
xi−x

α
,

m(xi )−m(x)

β
)>0

}
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Regression
The aggregation takes the following form:

Aggn(x) =
n∑

i=1

Wn,i (x)zi

1 [Biau et al., 2016]: with weight 0− 1 (COBRA).

Wn,i (x) =

∏M
`=1 1{|m`(xi )−m`(x)|<ε}∑n

j=1

∏M
`=1 1{|m`(xj )−m`(x)|<ε}

2 Kernel-based method of COBRA (kernel-based weight): for any h > 0,

Wn,i (x) =
Kh

(
m(xi )−m(x)

)
∑n

j=1 Kh

(
m(xj)−m(x)

)
for some kernel function K with Kh(x) = K (x/h).

3 [Fischer and Mougeot, 2019]: MixCOBRA.
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Applications on the Energy domain
Bregman divergences

Euclidean: For all x ∈ C = Rd , φ(x) = ‖x‖2
2 =

∑d
i=1 x

2
i ,

dφ(x , y) = ‖x − y‖2
2

General Kullback-Leibler (GKL): φ(x) =
∑d

i=1 xi log(xi ), C = (0,+∞)d ,

dφ(x , y) =
∑d

i=1

[
xi log

(
xi
yi

)
− (xi − yi )

]
Logistic: φ(x) =

∑d
i=1[xi log(xi ) + (1− xi ) log(1− xi )], C = (0, 1)d ,

dφ(x , y) =
∑d

i=1

[
xi log

(
xi
yi

)
+ (1− xi ) log

(
1−xi
1−yi

)]
Itakura-Saito: φ(x) = −

∑d
i=1 log(xi ), C = (0,+∞)d ,

dφ(x , y) =
∑d

i=1

[
xi
yi
− log

(
xi
yi

)
− 1
]

Polynomial: φ(x) =
∑d

i=1 |xi |p, C = Rd , p ≥ 1,

dφ(x , y) =
∑d

i=1(|xi |p − |yi |p) + p
∑d

i=1(−1)1{yi<0,p is odd}(xi − yi )y
p−1
i
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K-means with BD on some simulated datasets
M = 4 et K = 3.

Figure: K-means with Bregman divergences on some simulated data.
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Air compressor data

Provided by [Cadet et al., 2005].

Six predictors: air temperature, input pressure, output pressure, flow and
water temperature.

Response variable: power consumption.

In real-world problems, K is usually not available and it is the case here!
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Performance on air compressor
K Euclid GKL Logistic Ita KFC1 (Gaussian) KFC2 (Gaussian)

2
158.85 158.90 159.35 158.96 153.34 116.69
(6.42) (6.48) (6.71) (6.41) (6.72) (5.86)

3
157.38 157.24 156.99 157.24 153.69 117.45
(6.95) (6.84) (6.65) (6.85) (6.64) (5.55)

4
154.33 153.96 153.99 154.07 152.09 117.16
(6.69) (6.74) (6.45) (7.01) (6.58) (5.99)

5
153.18 153.19 152.95 152.25 151.05 117.55
(6.91) (6.77) (6.57) (6.70) (6.76) (5.90)

6
151.16 151.67 151.89 151.75 150.27 117.74
(6.91) (6.96) (6.62) (6.57) (6.82) (5.86)

7
151.08 150.99 152.81 151.85 150.46 117.58
(6.77) (6.84) (7.11) (6.61) (6.87) (6.15)

8
151.27 151.09 152.07 150.90 150.21 117.91
(7.17) (7.01) (6.65) (6.96) (7.03) (5.83)

Table: Performances of the KFC procedure.

Multiple LR 22-NN RF (500) Boosting (500)

178.67 292.08 217.14 158.92
(5.18) (9.17) (9.80) (4.33)

Table: Performances of alternative models.

∗ Even though K is not available, the KFC procedure still performs well on
this dataset.
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Wind turbine

Provided by Mäıa Eolis (see [Fischer et al., 2017]).

Six predictors: wind speed (real part, imaginary part, and strength),
wind direction (sine and cosine) and temperature.

Response variable: power.

And again, we don’t know K .
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Performance on wind turbine
K Euclid Poly KFC1 (Gaussian) KFC2 (Gaussian)

2
62.15 62.74 38.73 36.09
(3.01) (2.78) (2.05) (1.11)

3
62.54 64.21 38.88 37.18
(4.03) (7.01) (2.62) (3.09)

4
59.73 61.73 38.79 36.49
(4.15) (6.08) (2.81) (2.11)

5
54.52 56.74 38.68 36.62
(5.98) (2.31) (2.55) (2.02)

6
53.25 57.19 39.05 36.83
(2.69) (7.71) (2.81) (2.37)

7
51.34 55.67 38.61 36.78
(4.00) (5.91) (2.60) (2.28)

8
49.76 55.94 38.76 36.55
(5.31) (7.21) (2.56) (2.22)

Table: Performances of the KFC procedure.

Multiple LR 7-NN RF (500) Boosting (500)

69.46 40.30 37.26 41.65
(3.295) (1.447) (1.316) (1.424)

Table: Performances of alternative models.

∗ Similarly, the KFC procedure also performs well in this case, even without
the knowledge of K .
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Conclusion

Several simulations carried out on different simulated and real data have
shown that the KFC procedure provides remarkable responses in many
prediction problems involving clustering and modeling.

In particular, we obtain its excellent performances on the domain of
Energy for air compressor and wind turbine.
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Thank you!
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