Let \(X=\{\color{blue}{\text{x}_1,\dots,\text{x}_n}\}\subset\mathbb{R}^d\) be \(n\) points in \(d\)-dimensional Euclidean space \(\mathbb{R}^d\), and let \({\cal G}=(G_{i,j})\) with \(G_{k,j}\overset{iid}{\sim}{\cal N}(0,1/\color{red}{d'})\) for \(k=1,\dots,d\) and \(j=1,\dots,\color{red}{d'}\) with \(\color{red}{d'}<d\). Let also \(\color{red}{\widehat{\text{x}}_i}={\cal G}\color{blue}{\text{x}_i}\) and \(\color{red}{\widehat{\text{x}}_j}={\cal G}\color{blue}{\text{x}_j}\) be two points of \(\mathbb{R}^{\color{red}{d'}}\), thus for any \(\varepsilon\in (0,1)\) one has \[\mathbb{P}_{\cal G}\left(\left|\frac{\|\color{red}{\widehat{\text{x}}_i}-\color{red}{\widehat{\text{x}}_j}\|_{\color{red}{d'}}^2}{\|\color{blue}{\text{x}_i}-\color{blue}{\text{x}_j}\|_d^2}-1,\forall i,j\right|> \varepsilon\right)< 2ne^{-\color{red}{d'}(\varepsilon^2/2-\varepsilon^3/3)}.\]